Background: Gut microbiota interacts with the human gut in multiple ways. Microbiota composition is altered in inflamed gut conditions. Likewise, certain microbial fermentation products as well as the lipopolysaccharides of the outer membrane are examples of microbial products with opposing influences on gut epithelium inflammation status. This system of intricate interactions is known to play a core role in human gut inflammatory diseases. Here, we present and analyse a simplified model of bidirectional interaction between the microbiota and the host: in focus is butyrate as an example for a bacterial fermentation product with anti-inflammatory properties.

Results: We build a dynamical model based on an existing model of inflammatory regulation in gut epithelial cells. Our model introduces both butyrate as a bacterial product which counteracts inflammation, as well as bacterial LPS as a pro-inflammatory bacterial product. Moreover, we propose an extension of this model that also includes a feedback interaction towards bacterial composition. The analysis of these dynamical models shows robust bi-stability driven by butyrate concentrations in the gut. The extended model hints towards a further possible enforcement of the observed bi-stability via alteration of gut bacterial composition. A theoretical perspective on the stability of the described switch-like character is discussed.

Conclusions: Interpreting the results of this qualitative model allows formulating hypotheses about the switch-like character of inflammatory regulation in the gut epithelium, involving bacterial products as constitutive parts of the system. We also speculate about possible explanations for observed bimodal distributions in bacterial compositions in the human gut. The switch-like behaviour of the system proved to be mostly independent of parameter choices. Further implications of the qualitative character of our modeling approach for the robustness of the proposed hypotheses are discussed, as well as the pronounced role of butyrate compared to other inflammatory regulators, especially LPS, NF- κB and cytokines.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6296070PMC
http://dx.doi.org/10.1186/s12918-018-0667-6DOI Listing

Publication Analysis

Top Keywords

human gut
16
gut
11
robust bi-stability
8
gut epithelium
8
bacterial
8
inflammatory regulation
8
regulation gut
8
bacterial product
8
bacterial composition
8
switch-like character
8

Similar Publications

α-Cyclodextrin (αCD), a cyclic hexasaccharide composed of six glucose units, is not digested in the small intestine but is completely fermented by gut microbes. Recently, we have reported that αCD supplementation for nonathlete men improved their 10 km biking times. However, the beneficial effects of αCD on exercise are not yet fully understood.

View Article and Find Full Text PDF

Probiotics exert their beneficial effects by improving the intestinal environment. Heat-inactivated probiotics may show similar effects. However, whether multi-strain mixtures (MSM) are better than single strains, irrespective of whether the bacteria are alive or dead, is unknown.

View Article and Find Full Text PDF

The gut microbiota, an extensive ecosystem harboring trillions of bacteria, plays a pivotal role in human health and disease, influencing diverse conditions from obesity to cancer. Among the microbiota's myriad functions, the capacity to metabolize drugs remains relatively unexplored despite its potential implications for drug efficacy and toxicity. Experimental methods are resource-intensive, prompting the need for innovative computational approaches.

View Article and Find Full Text PDF

Unlabelled: Members of the gut microbiome encounter a barrage of host- and microbe-derived microbiocidal factors that must be overcome to maintain fitness in the intestine. The long-term stability of many gut microbiome strains within the microbiome suggests the existence of strain-specific strategies that have evolved to foster resilience to such insults. Despite this, little is known about the mechanisms that mediate this resistance.

View Article and Find Full Text PDF

CAZymes ( C arbohydrate A ctive En Zymes ) degrade, synthesize, and modify all complex carbohydrates on Earth. CAZymes are extremely important to research in human health, nutrition, gut microbiome, bioenergy, plant disease, and global carbon recycling. Current CAZyme annotation tools are all based on sequence similarity.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!