The sustainable production of squalene has driven the development of microbial cell factories due to the limitation of low-yielding bioprocesses from plants and illegal harvesting shark liver. We report the metabolic engineering of Corynebacterium glutamicum to produce squalene from glucose. Combinatorial metabolic engineering strategies for precursor rebalancing, redox balancing, and blocking the competing pathway for the isopentenyl diphosphate availabilities were applied by repressing the target genes using the CRISPR interference. The best engineered strain using high-throughput fermentation produced squalene from glucose at 5.4 ± 0.3 mg/g dry cell weight (DCW) and 105.3 ± 3.0 mg/L, which was a 5.2-fold increase over the parental strain. In addition, flask cultivation of C. glutamicum overexpressing the dxs and idi genes with squalene synthase gene and repressing the idsA gene resulted in production of squalene at 5.8 ± 0.4 mg/g DCW and 82.8 ± 6.2 mg/L, which was a 3.4-fold increase over the parental strain.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.jafc.8b05818 | DOI Listing |
J Control Release
January 2025
Key Laboratory of Drug-Targeting and Drug Delivery System of the Education Ministry and Sichuan Province, Sichuan Engineering Laboratory for Plant-Sourced Drug and Sichuan Research Center for Drug Precision Industrial Technology, West China School of Pharmacy, Sichuan University, Chengdu 610041, China. Electronic address:
Most subunit antigens often induce suboptimal vaccination efficacy, possibly due to their low immunogenicity and limited ability to migrate to lymph nodes (LNs). Although the emergence of nanovaccine has significantly addressed these challenges, most formulations still require specific biological or chemical modifications to the carrier or antigen for efficient antigen loading. In this study, we report a Pickering emulsion-based nanovaccine that directly utilized antigens and adjuvants as stabilizers, effectively amplifying immune responses without additional physicochemical alterations.
View Article and Find Full Text PDFPharmacol Res
January 2025
Korean Convergence Medical Science Major, Korea National University of Science and Technology (UST), Daejeon, 34113, South Korea; Herbal Medicine Resources Research Center, Korea Institute of Oriental Medicine (KIOM), 111 Geonjae-Ro, Naju-Si, South Korea. Electronic address:
Aspilia africana (Pers.) C. D.
View Article and Find Full Text PDFPLoS One
January 2025
Seqirus S.r.l., Monteriggioni (Siena), Italy.
Objective: In Europe, the age indication for the MF59-adjuvanted quadrivalent influenza vaccine (aQIV) has recently been extended from ≥65 to ≥50 years. Considering that the earliest approval of its trivalent formulation (aTIV) in Italy was for people aged ≥12 years, we aimed to systematically appraise data on the immunogenicity, efficacy, and safety of aTIV/aQIV in non-elderly adults.
Methods: A systematic literature review was conducted according to the available guidelines and studies were searched in MEDLINE, Biological Abstracts, Web of Science, Cochrane Library and clinical trial registries.
Vaccines (Basel)
November 2024
GSK, Rockville Centre for Vaccines Research, Rockville, MD 20850, USA.
Background: Adjuvants play a crucial role in improving the immunogenicity of various antigens in vaccines. Squalene-in-water emulsions are clinically established vaccine adjuvants that improve immune responses, particularly during a pandemic. Current manufacturing processes for these emulsion adjuvants include microfluidizers and homogenizers and these processes have been used to produce emulsion adjuvants to meet global demands during a pandemic.
View Article and Find Full Text PDFLife (Basel)
December 2024
Xi'an Botanical Garden of Shaanxi Province, Institute of Botany of Shaanxi Province, No. 17 Cuihua South Road, Xi'an 710061, China.
is a traditional Chinese medicinal plant of considerable application value and commercial potential, primarily due to its production of various bioactive compounds, particularly dammarane-type triterpenoid saponins that are structurally analogous to ginsenosides. Oxidosqualene cyclase (OSC), a pivotal enzyme in the biosynthesis of triterpenoid metabolites in plants, catalyzes the conversion of oxidosqualene into triterpenoid precursors, which are essential components of the secondary metabolites found in . To elucidate the role of gene family members in the synthesis of gypenosides within , this study undertook a comprehensive genome-wide identification and characterization of genes within and compared their expression levels across populations distributed over different geographical regions by both transcriptome sequencing and qRT-PCR experimental validation.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!