A Gemini Cationic Lipid with Histidine Residues as a Novel Lipid-Based Gene Nanocarrier: A Biophysical and Biochemical Study.

Nanomaterials (Basel)

Grupo de Química Coloidal y Supramolecular, Departamento de Química Física, Facultad de Ciencias Químicas, Universidad Complutense de Madrid, 28040 Madrid, Spain.

Published: December 2018

This work reports the synthesis of a novel gemini cationic lipid that incorporates two histidine-type head groups (C₃(CHis)₂). Mixed with a helper lipid 1,2-dioleoyl--glycero-3-phosphatidyl ethanol amine (DOPE), it was used to transfect three different types of plasmid DNA: one encoding the green fluorescence protein (pEGFP-C3), one encoding a luciferase (pCMV-Luc), and a therapeutic anti-tumoral agent encoding interleukin-12 (pCMV-IL12). Complementary biophysical experiments (zeta potential, gel electrophoresis, small-angle X-ray scattering (SAXS), and fluorescence anisotropy) and biological studies (FACS, luminometry, and cytotoxicity) of these C₃(CHis)₂/DOPE-pDNA lipoplexes provided vast insight into their outcomes as gene carriers. They were found to efficiently compact and protect pDNA against DNase I degradation by forming nanoaggregates of 120⁻290 nm in size, which were further characterized as very fluidic lamellar structures based in a sandwich-type phase, with alternating layers of mixed lipids and an aqueous monolayer where the pDNA and counterions are located. The optimum formulations of these nanoaggregates were able to transfect the pDNAs into COS-7 and HeLa cells with high cell viability, comparable or superior to that of the standard Lipo2000*. The vast amount of information collected from the in vitro studies points to this histidine-based lipid nanocarrier as a potentially interesting candidate for future in vivo studies investigating specific gene therapies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6316511PMC
http://dx.doi.org/10.3390/nano8121061DOI Listing

Publication Analysis

Top Keywords

gemini cationic
8
cationic lipid
8
lipid
4
lipid histidine
4
histidine residues
4
residues novel
4
novel lipid-based
4
lipid-based gene
4
gene nanocarrier
4
nanocarrier biophysical
4

Similar Publications

Cationic gemini surfactants are used due to their broad spectrum of activity, especially surface, anticorrosive and antimicrobial properties. Mixtures of cationic and anionic surfactants are also increasingly described. In order to investigate the effect of anionic additive on antimicrobial activity, experimental studies were carried out to obtain MIC (minimal inhibitory concentration) against and bacteria.

View Article and Find Full Text PDF

Interaction of a novel dihydroxy dibenzoazacrown (HDTC) with various surfactants of different charges, for example, anionic (sodium dodecylsulfate, SDS), cationic (dodecyl trimethylammonium bromide, DTAB), cationic gemini (butanediyl-1,4-bis(dimethylcetylammonium bromide), 16-4-16), ionic liquid (1-hexadecyl-3-methylimidazolium chloride, CMImCl), and nonionic (polyoxyethylene sorbitan monostearate, Tween-60), has been investigated at a widespread range of surfactant concentrations (including premicellar, micellar, and postmicellar regime) in 15% (v/v) EtOH medium at room temperature. Several experimental techniques, viz., tensiometry, UV-vis spectroscopy, and steady-state fluorimetry, are implemented to explicate these interactions.

View Article and Find Full Text PDF

In the process of oil and gas exploration, the corrosion of carbon steel pipes results in substantial economic losses, numerous casualties, environmental contamination, and resource waste. The advancement of highly efficient and stable corrosion inhibitors holds significant importance for protecting carbon steel from corrosion during oil and gas exploitation. In this study, two new cationic Gemini surfactants (2CcoesT, where = 12, 14) were synthesized through a straightforward two-step reaction.

View Article and Find Full Text PDF

Herrin, three Gemini cationic surfactants related to benzo[d]thiazol-3-ium bromide with variable hydrocarbon chain lengths (TBC n = 6, 12, and 18) were synthesized successfully and confirmed by using IR and HNMR spectroscopies. Critical micelle concentration and different thermodynamic properties of all surfactants under study were measured using conductivity, density, molal volume, and refractive index techniques. The Critical micelle concentration of TBC 6, TBC 12, and TBC 18 surfactants measured from the different techniques shows an acceptable agreement.

View Article and Find Full Text PDF

Hybrid nanoparticles formed by Silica (SiO) coated with cationic gemini surfactants with variable hydroxyl group substituted spacers, 12-4(OH)-12,2Br and 12-4(OH)-12,2Br have shown a great extent of compaction of calf thymus DNA (ct-DNA) compared to conventional counterpart cationic surfactant, dodecyl trimethylammonium bromide (DTAB). Study shows not only the hydrophobicity of the spacer but also the hydrogen bonding interactions between the hydroxyl group substituted spacer and DNA have a great role in DNA compaction. 12-4(OH)-12,2Br is more efficient in compacting ct-DNA compared to 12-4(OH)-12,2Br due to the stronger binding of the former with ct-DNA than the latter.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!