Cetirizine is a zwitterionic second-generation antihistamine containing - and -enantiomers, levocetirizine, and ()-cetirizine. Levocetirizine is known to have a higher affinity for the histamine H₁ receptors than ()-cetirizine; ligand-receptor docking simulations have suggested the importance of the formation of a salt bridge (electrostatic interaction) between the carboxylic group of levocetirizine and the Lys191 residue at the fifth transmembrane domain of human histamine H₁ receptors. In this study, we evaluated the roles of Lys191 in the regulation of the thermodynamic binding forces of levocetirizine in comparison with ()-cetirizine. The binding enthalpy and entropy of these compounds were estimated from the van 't Hoff equation, by using the dissociation constants obtained from their displacement curves against the binding of [³H]mepyramine to the membrane preparations of Chinese hamster ovary cells expressing wild-type human H₁ receptors and their Lys191 mutants to alanine at various temperatures. We found that the higher binding affinity of wild-type H₁ receptors for levocetirizine than ()-cetirizine was achieved by stronger forces of entropy-dependent hydrophobic binding of levocetirizine. The mutation of Lys191 to alanine reduced the affinities for levocetirizine and ()-cetirizine, through a reduction in the entropy-dependent hydrophobic binding forces of levocetirizine and the enthalpy-dependent electrostatic binding forces of ()-cetirizine. These results suggested that Lys191 differentially regulates the binding enthalpy and entropy of these enantiomers, and that Lys191 negatively regulates the enthalpy-dependent electrostatic binding forces of levocetirizine, contrary to the predictions derived from the ligand-receptor docking simulations.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6321019PMC
http://dx.doi.org/10.3390/ijms19124067DOI Listing

Publication Analysis

Top Keywords

binding forces
20
h₁ receptors
20
forces levocetirizine
16
levocetirizine -cetirizine
16
histamine h₁
12
binding
10
levocetirizine
10
regulation thermodynamic
8
thermodynamic binding
8
human histamine
8

Similar Publications

Dust emissions from open-pit mining pose a significant threat to environmental safety and human health. Currently, the range of dust suppressants used in coal mining is limited, often failing to account for their suitability across various stockpiles. This oversight results in poor infiltration after application, leading to insufficient crust formation and reduced durability.

View Article and Find Full Text PDF

Orthogonal self-assembly represents a useful methodology to construct supramolecular polymers with AA- and AB-type monomers, as commonly used for covalently linked polymers. So far, the design of such monomers has relied heavily on three-dimensional macrocycles, and the use of two-dimensional shape-persistent macrocycles for this purpose remains rather rare. Here, we demonstrate a dimerization motif based on a hydrogen-bonded macrocycle that can be effectively applied to form orthogonal supramolecular polymers.

View Article and Find Full Text PDF

Molecular dynamics simulation of CL-20 based high temperature resistant PBX.

J Mol Model

January 2025

Shanxi Jiangyang Chemical Industry Corporation, Taiyuan, 030041, Shanxi, China.

Context: To address the issue that the output charge in existing Deflagration to Detonation Transition (DDT) detonators cannot withstand high temperatures of 200 °C, and to improve the output performance of the detonator, a CL-20 (Hexanitrohexaazaisowurtzitane) based polymer bonded explosive (PBX) was investigated as the primary charge material for the detonator. To select the most suitable binder for thermal resistance, molecular dynamics (MD) simulations were employed to evaluate the performance of different binders at various crystal planes and temperatures. The results indicate that among the five PBXs models, CL-20/F exhibits the highest binding energy and the shortest bond initiation length at both ambient and elevated temperatures.

View Article and Find Full Text PDF

Phosphorylation of substrates by cyclin-dependent kinases (CDKs) is the driving force of cell cycle progression. Several CDK-activating cyclins are involved, yet how they contribute to substrate specificity is still poorly understood. Here, we discover that a positively charged pocket in cyclin B1, which is exclusively conserved within B-type cyclins and binds phosphorylated serine- or threonine-residues, is essential for correct execution of mitosis.

View Article and Find Full Text PDF

In this study, the interactions between three quaternary ammonium salt (QAS) cationic surfactants with different branched-chain lengths (TMBAC, TEBAC, and TBBAC) and DNA are investigated by UV-vis absorption, fluorescence and CD spectroscopy, viscosity method, and gel electrophoresis. Berberine hydrochloride (BR) is utilized as a fluorescent probe. The three interaction modes and strengths are compared.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!