3D Numerical Simulation of a Z Gate Layout MOSFET for Radiation Tolerance.

Micromachines (Basel)

Key Laboratory of RF Circuits and Systems, Ministry of Education, Hangzhou Dianzi University, Hangzhou 310018, China.

Published: December 2018

In this paper, for the first time, an n-channel metal-oxide-semiconductor field-effect transistor (NMOSFET) layout with a Z gate and an improved total ionizing dose (TID) tolerance is proposed. The novel layout can be radiation-hardened with a fixed charge density at the shallow trench isolation (STI) of 3.5 × 10 cm. Moreover, it has the advantages of a small footprint, no limitation in / design, and a small gate capacitance compared with the enclosed gate layout. Beside the Z gate layout, a non-radiation-hardened single gate layout and a radiation-hardened enclosed gate layout are simulated using the Sentaurus 3D technology computer-aided design (TCAD) software. First, the transfer characteristics curves (-) curves of the three layouts are compared to verify the radiation tolerance characteristic of the Z gate layout; then, the threshold voltage and the leakage current of the three layouts are extracted to compare their TID responses. Lastly, the threshold voltage shift and the leakage current increment at different radiation doses for the three layouts are presented and analyzed.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315489PMC
http://dx.doi.org/10.3390/mi9120659DOI Listing

Publication Analysis

Top Keywords

gate layout
24
three layouts
12
gate
8
layout
8
radiation tolerance
8
layout gate
8
layout radiation-hardened
8
enclosed gate
8
threshold voltage
8
leakage current
8

Similar Publications

Exploring caffeine as a disruptor of membrane integrity and genomic stability in Staphylococcus aureus: functional and in silico analysis.

Arch Microbiol

January 2025

School of Basic and Applied Sciences, Department of Biological Sciences, Dayananda Sagar University, Innovation Campus, Kudlu Gate, Hosur Rd, Bengaluru, 560 068, India.

To explore the mechanistic underpinnings of caffeine as a potent antibacterial against Staphylococcus aureus ATCC 25923 via in vitro functional assays, whole-genome sequencing, and in silico docking studies. In vitro studies established that caffeine's minimum inhibitory concentration (MIC) against S. aureus ATCC 25923 is 0.

View Article and Find Full Text PDF

Fault correcting adder design for low power applications.

Sci Rep

November 2024

NIMS Institute of Engineering and Technology (NIET), NIMS University, Jaipur, Rajasthan, 303121, India.

Field Programmable Gate Arrays are extensively used in space, military, and commercial sectors due to their reprogrammable nature. In high-safety environments, ensuring fault tolerance is crucial to improving the performance of electronic and computational systems. Common fault-tolerant methods include time redundancy, double modular redundancy, triple modular redundancy, hardware redundancy, self-checking, self-repairing, and Operand Width Aware Hardware Reuse.

View Article and Find Full Text PDF

van der Waals (vdW) indium selenide (InSe) is receiving attention for its exceptional electron mobility and moderate band gap, enabling various applications. However, the intrinsic -type behavior of InSe has restricted its use predominantly to -type devices, constraining its application in complementary integrated microsystems. Here, we show superior ambipolar InSe transistors with vdW bottom contacts, achieving impressive -type on/off current ratios greater than 10 and Schottky barrier heights approaching the ideal Schottky-Mott limit.

View Article and Find Full Text PDF

Comprehensive Review of FinFET Technology: History, Structure, Challenges, Innovations, and Emerging Sensing Applications.

Micromachines (Basel)

September 2024

Department of Electrical and Computer Engineering, Rutgers, The State University of New Jersey, New Brunswick, NJ 08854, USA.

The surge in demand for 3D MOSFETs, such as FinFETs, driven by recent technological advances, is explored in this review. FinFETs, positioned as promising alternatives to bulk CMOS, exhibit favorable electrostatic characteristics and offer power/performance benefits, scalability, and control over short-channel effects. Simulations provide insights into functionality and leakage, addressing off-current issues common in narrow band-gap materials within a CMOS-compatible process.

View Article and Find Full Text PDF

The injection molding process is one of the most widely used methods for polymer processing in mass production. Three critical factors in this process include the type of polymer, injection molding machines, and processing molds. Polypropylene (PP) is a widely used semi-crystalline polymer due to its favorable flow characteristics, including a high melt flow index and the absence of a need for a mold temperature controller.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!