Angular dependent strong coupling between localized waveguide resonance and surface plasmon resonance in complementary metamaterials.

J Phys Condens Matter

Shaanxi Joint Lab of Graphene, State Key Lab Incubation Base of Photoelectric Technology and Functional Materials, International Collaborative Center on Photoelectric Technology and Nano Functional Materials, Institute of Photonics & Photon-Technology, Northwest University, Xi'an 710069, People's Republic of China.

Published: February 2019

We give direct evidence of both surface plasmon resonance (SPR) and localized waveguide resonance (LWR) contribution to the extraordinary optical transmission in complementary metamaterials. Strong coupling between SPR and LWR are also observed with clear evidence of Rabi splitting and anti-crossing phenomena. The splitting introduces sharp phase shift, which in turn enhances group velocity delay by the incident angle without geometric parameter change. The results not only clarify SPR and LWR effects in the extraordinary optical transmission, but also provide a novel route to control light-metamaterial interaction by angular modulation for on-chip slow light devices.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-648X/aaf8e5DOI Listing

Publication Analysis

Top Keywords

strong coupling
8
localized waveguide
8
waveguide resonance
8
surface plasmon
8
plasmon resonance
8
complementary metamaterials
8
extraordinary optical
8
optical transmission
8
spr lwr
8
angular dependent
4

Similar Publications

Conventional kinesin protein is a prototypical biological molecular motor that can step processively on microtubules towards the plus end by hydrolyzing ATP molecules, performing the biological function of intracellular transports. An important characteristic of the kinesin is the load dependence of its velocity, which is usually measured by using the single molecule optical trapping method with a large-sized bead attached to the motor stalk. Puzzlingly, even for the same kinesin, some experiments showed that the velocity is nearly independent of the forward load whereas others showed that the velocity decreases evidently with the increase in the magnitude of the forward load.

View Article and Find Full Text PDF

This work studies the generation of the orbital angular momentum (OAM) beam in the double quantum dot-metal nanoparticle (DQD-MNP) system under the application of the OAM beam. First, an analytical model is derived to attain the relations of probe and generated fields as a distance function in the DQD-MNP system under OAM applied field and spontaneously generated coherence (SGC) components. The calculation here is of material property; it differs from others by calculating energy states of the DQDs and the computation of the transition momenta between quantum dot (QD)-QD and QD-wetting layer (WL) transitions.

View Article and Find Full Text PDF

Optimized Interface Engineering Enhances Carrier and Phonon Scattering for Superior Thermoelectric Performance in Yb-Filled Skutterudites.

ACS Appl Mater Interfaces

January 2025

Key Laboratory of Radiation Physics and Technology, Ministry of Education, Institute of Nuclear Science and Technology, Sichuan University, Chengdu 610064, China.

Thermoelectric (TE) performance in materials is often constrained by the strong coupling between carrier and phonon transport, necessitating trade-offs between electrical and thermal properties that limit improvements in the figure of merit (). Herein, a novel strategy is proposed to achieve simultaneous energy filtering and enhanced phonon scattering, effectively optimizing the TE properties of CoSb-based skutterudites. By introducing CuTe nanoprecipitates into the YbCoSb matrix, interfacial barriers are formed, which selectively filter low-energy charge carriers, significantly improving the Seebeck coefficient while maintaining high carrier mobility.

View Article and Find Full Text PDF

Objectives: Schistosomiasis (SCH) remains a public health challenge in Rwanda despite ongoing interventions. This paper provides an overview of Rwanda's SCH journey, highlighting progress made through mass drug administration (MDA), diagnostic advancements, and strategic partnerships with key stakeholders.

Methods: Since 2014, the point-of-care circulating cathodic antigen (POC-CCA) test has been introduced alongside Kato-Katz (KK), improving mapping accuracy and detecting low-intensity infections.

View Article and Find Full Text PDF

Carbonate fluorapatite coatings on phillipsite represent a significant sink of phosphorus in abyssal plains of the western Pacific Ocean.

Proc Natl Acad Sci U S A

February 2025

Department of Earth System Sciences, Center for Earth System Research and Sustainability, University of Hamburg, Hamburg 20146, Germany.

As an essential micronutrient, phosphorus plays a key role in oceanic biogeochemistry, with its cycling intimately connected to the global carbon cycle and climate change. Authigenic carbonate fluorapatite (CFA) has been suggested to represent a significant phosphorus sink in the deep ocean, but its formation mechanisms in oceanic low-productivity settings remain poorly constrained. Applying X-ray absorption near edge structure, transmission electron microscopy, and laser ablation inductively coupled plasma mass spectrometer analyses, we report a unique mineral assemblage where CFA crystals coat phillipsite in abyssal sediments of the East Mariana Basin and the Philippine Sea.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!