Here we have demonstrated the profound impact of surface potential on the luminescence of an array of InGaN/GaN nano-disk in a wire heterostructure. The change in surface potential is brought about by a combination of dry and successive wet-processing treatments. The photoluminescence (PL) properties are determined as a function of size and height of this array of nano-disks. The observed characteristics are coherently explained by considering a change in quantum confinement induced by the change in surface potential, quantum-confined Stark effect, exciton binding energy and strain relaxation for varying surface potential. The change in hole bound state energy due to parabolic potential well near the side-wall is found to be the dominating factor. The PL peak position, full width at half-maximum, strain relaxation and integrated PL intensity are studied as a function of incident power and temperature. The devices demonstrate higher integrated PL intensity and slope efficiency.

Download full-text PDF

Source
http://dx.doi.org/10.1088/1361-6528/aaf8deDOI Listing

Publication Analysis

Top Keywords

surface potential
20
ingan/gan nano-disk
8
nano-disk wire
8
change surface
8
strain relaxation
8
integrated intensity
8
potential
6
surface
5
enhanced luminescence
4
luminescence ingan/gan
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!