Biodegradation of acenaphthene by Sphingobacterium sp. strain RTSB involving trans-3-carboxy-2-hydroxybenzylidenepyruvic acid as a metabolite.

Chemosphere

Department of Chemistry, Sreegopal Banerjee College, Bagati, Magra, Hooghly, West Bengal, 712148, India. Electronic address:

Published: March 2019

A gram-negative bacterium designated as RTSB was isolated from a petroleum-contaminated soil competent of utilizing acenaphthene as the solitary source of carbon and energy. The strain RTSB was identified as a Sphingobacterium species based on the morphological, nutritional and biochemical features of the organism as well as 16S rRNA sequence analysis. By a combination of chromatographic and spectrometric techniques, different metabolites of the acenaphthene degradation pathway by the strain RTSB were isolated and identified, which indicate a novel acenaphthene degradation pathway involving 1-naphthoic acid. Characterization of different metabolites suggested transformation of acenaphthene to 1-naphthoic acid through 1-acenaphthenol, acenaphthenequinone and naphthalene-1,8-dicarboxylic acid in the upper pathway of degradation; while in the later, 1-naphthoic acid was processed via a novel meta-cleavage pathway, leading to the formation of trans-3-carboxy-2-hydroxybenzylidenepyruvic acid, and then to salicylic acid and catechol entering into the TCA cycle intermediates. This detailed study of acenaphthene degradation by a Sphingobacterium species describes a distinct pathway of acenaphthene degradation involving the novel metabolite trans-3-carboxy-2-hydroxybenzylidenepyruvic acid.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chemosphere.2018.12.046DOI Listing

Publication Analysis

Top Keywords

acenaphthene degradation
16
strain rtsb
12
trans-3-carboxy-2-hydroxybenzylidenepyruvic acid
12
1-naphthoic acid
12
acid
8
rtsb isolated
8
sphingobacterium species
8
degradation pathway
8
acenaphthene
6
degradation
5

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!