A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Effective elimination of biofilm formed with waterborne pathogens using copper nanoparticles. | LitMetric

Effective elimination of biofilm formed with waterborne pathogens using copper nanoparticles.

Microb Pathog

Department of Chemistry, School of Chemical and Biotechnology, SASTRA Deemed University, Thanjavur, Tamil Nadu, 613401, India. Electronic address:

Published: February 2019

In this paper, the self assembling properties of taurolipids were used to prepare stable copper nanoparticles (CuNPs), and demonstrated the ability of CuNPs to eradicate the biofilms formed by waterborne pathogens. The synthesized CuNPs display wine red color and exhibited surface plasmon resonance with a maximum at 590 nm. Transmission electron microscopy showed that the CuNPs are well-dispersed with spherical morphology and the size range between 5 and 12 nm. The powder X-ray diffraction study revealed that the CuNPs was free from copper oxide impurities and crystalline with the face centered cubic structure. The CuNPs exhibited excellent anti-biofilm activity against water borne pathogens such as Escherichia coli, Pseudomonas aeruginosa, Salmonella typhi, and Shigella flexneri. Light microscopy and scanning electron microscopy (SEM) study revealed that CuNPs eliminates the mature biofilm at the minimum biofilm eradication concentration of 12.5 μM. The antimicrobial activity of the CuNPs was observed at the minimum inhibitory concentration of 25 μM, indicating the reported CuNPs exhibit true anti-biofilm effect. Fluorescence microscopy and SEM study proved that CuNPs kills the bacteria through membrane damage. The possibility to use CuNPs in cleaning biofilm formed on storage containers was demonstrated through removing the mature biofilm formed on a glass pipe.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.micpath.2018.12.025DOI Listing

Publication Analysis

Top Keywords

biofilm formed
12
cunps
11
formed waterborne
8
waterborne pathogens
8
copper nanoparticles
8
electron microscopy
8
study revealed
8
revealed cunps
8
microscopy sem
8
sem study
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!