Different correlation detection methods have been specifically designed for the microbiome data analysis considering the compositional data structure and different sequencing depths. Along with the speedy development of omics studies, there is an increasing interest in discovering the biological associations between microbes and host metabolites. This raises the need of finding proper statistical methods that facilitate the correlation analysis across different omics studies. Here, we comprehensively evaluated six different correlation methods, i.e., Pearson correlation, Spearman correlation, Sparse Correlations for Compositional data (SparCC), Correlation inference for Compositional data through Lasso (CCLasso), Mutual Information Coefficient (MIC), and Cosine similarity methods, for the correlations detection between microbes and metabolites. Three simulated and two real-world data sets (from public databases and our lab) were used to examine the performance of each method regarding its specificity, sensitivity, similarity, accuracy, and stability with different sparsity. Our results indicate that although each method has its own pros and cons in different scenarios, Spearman correlation and MIC outperform the others with their overall performances. A strategic guidance was also proposed for the correlation analysis between microbe and metabolite.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ab.2018.12.008 | DOI Listing |
Biophys J
January 2025
Department of Biology, New York University, New York, New York, 10003, USA. Electronic address:
The outer membrane is the defining structure of Gram-negative bacteria. We previously demonstrated that it is a major load-bearing component of the cell envelope and is therefore critical to the mechanical robustness of the bacterial cell. Here, to determine the key molecules and moieties within the outer membrane that underlie its contribution to cell envelope mechanics, we measured cell-envelope stiffness across several sets of mutants with altered outer-membrane sugar content, protein content, and electric charge.
View Article and Find Full Text PDFBMC Anesthesiol
January 2025
Department of Critical Care Medicine, West China Hospital, Sichuan University, 37 Guo Xue Xiang St, Chengdu, 610041, Sichuan, China.
Objective: Early diagnosis of intensive care unit-acquired weakness (ICUAW) is crucial for improving the outcomes of critically ill patients. Hence, this study was designed to identify predisposing factors for ICUAW and establish a predictive model for the early diagnosis of ICUAW.
Methods: This prospective observational multicenter study included septic patients from the comprehensive ICUs of West China Hospital of Sichuan University and 10 other hospitals between September and November 2023.
BMC Endocr Disord
January 2025
Department of Respiratory and Critical Care Medicine, Renmin Hospital of Wuhan University, Wuhan, 430060, China.
Background: Menopause is a significant phase in women's health, in which the incidence of obstructive sleep apnea (OSA) is significantly increased. Body fat distribution changes with age and hormone levels in postmenopausal women, but the extent to which changes in body fat distribution affect the occurrence of OSA is unclear.
Methods: This research performed a cross-sectional analysis utilizing data from the 2015-2016 National Health and Nutrition Examination Survey (NHANES).
Nat Commun
January 2025
Sorbonne Université, CNRS, Laboratory of Computational and Quantitative Biology, LCQB, Paris, France.
Telomere shortening ultimately causes replicative senescence. However, identifying the mechanisms driving replicative senescence in cell populations is challenging due to the heterogeneity of telomere lengths and the asynchrony of senescence onset. Here, we present a mathematical model of telomere shortening and replicative senescence in Saccharomyces cerevisiae which is quantitatively calibrated and validated using data of telomerase-deficient single cells.
View Article and Find Full Text PDFNat Commun
January 2025
Clinical Research Division, Fred Hutchinson Cancer Center, Seattle, WA, USA.
Gut microbiota disruptions after allogeneic hematopoietic cell transplantation (alloHCT) are associated with increased risk of acute graft-versus-host disease (aGVHD). We designed a randomized, double-blind placebo-controlled trial to test whether healthy-donor fecal microbiota transplantation (FMT) early after alloHCT reduces the incidence of severe aGVHD. Here, we report the results from the single-arm run-in phase which identified the best of 3 stool donors for the randomized phase.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!