The central dogma of molecular biology introduced by Crick describes a linear flow of information from DNA to mRNA to protein. Since then it has become evident that RNA undergoes several maturation steps such as capping, splicing, 3'-end processing, and editing. Likewise, nucleotide modifications are common in mRNA and are present in all organisms impacting on the regulation of gene expression. The most abundant modification found in mRNA is N6-methyladenosine (mA). Deposition of mA is a nuclear process and is performed by a megadalton writer complex primarily on mRNAs, but also on microRNAs and lncRNAs. The mA methylosome is composed of the enzymatic core components METTL3 and METTL14, and several auxiliary proteins necessary for its correct positioning and functioning, which are WTAP, VIRMA, FLACC, RBM15, and HAKAI. The mA epimark is decoded by YTH domain-containing reader proteins YTHDC and YTHDF, but METTLs can act as "readers" as well. Eraser proteins, such as FTO and ALKBH5, can remove the methyl group. Here we review recent progress on the role of mA in regulating gene expression in light of Crick's central dogma of molecular biology. In particular, we address the complexity of the writer complex from an evolutionary perspective to obtain insights into the mechanism of ancient mA methylation and its regulation.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1021/acs.biochem.8b01166 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!