Background: Historically, inflammatory periodontal diseases (gingivitis and periodontitis) have been recognized as being primarily of bacterial origin. Bacteria are necessary for disease development, but the presence of specific bacteria does not guarantee progression to periodontitis. Periodontitis is a multifactorial disease; specific bacteria are associated with disease, but may not be the target of treatment. Gingivitis and periodontitis are inflammatory conditions associated with bacterial overgrowth.

Aim: To analyse evidence for established thought that specific bacteria directly participate in the pathogenesis of periodontitis and question the long-held tenet that penetration of the periodontal connective tissues by bacteria and their products is a significant phase in the initial development of periodontitis.

Methods: The literature was searched for studies on initiation of gingivitis and periodontitis by specific pathogens. The search results were insufficient for a systematic review and have been summarized in a commentary instead.

Results: There is very little evidence in the literature to support the commonly held concept that specific bacteria initiate periodontitis.

Conclusion: We present evidence for a paradigm supporting the central role of inflammation, rather than specific microbiota, in the early pathogenesis of periodontitis, and discuss whether controlling the inflammation can influence the character and composition of the periodontal infection.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6357965PMC
http://dx.doi.org/10.1111/jcpe.13046DOI Listing

Publication Analysis

Top Keywords

specific bacteria
20
pathogenesis periodontitis
12
gingivitis periodontitis
12
periodontitis
8
specific
7
bacteria
7
appraisal role
4
role specific
4
bacteria initial
4
initial pathogenesis
4

Similar Publications

Brucella spp. is the bacterium responsible for brucellosis, a zoonotic infection that affects humans. This disease poses significant health challenges and contributes to poverty, particularly in developing countries.

View Article and Find Full Text PDF

Soil microbiota plays crucial roles in maintaining the health, productivity, and nutrient cycling of terrestrial ecosystems. The persistence and prevalence of heterocyclic compounds in soil pose significant risks to soil health. However, understanding the links between heterocyclic compounds and microbial responses remains challenging due to the complexity of microbial communities and their various chemical structures.

View Article and Find Full Text PDF

A cross-species inducible system for enhanced protein expression and multiplexed metabolic pathway fine-tuning in bacteria.

Nucleic Acids Res

January 2025

Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, NO.1800, Lihu avenue, Wuxi 214122, China.

Inducible systems are crucial to metabolic engineering and synthetic biology, enabling organisms that function as biosensors and produce valuable compounds. However, almost all inducible systems are strain-specific, limiting comparative analyses and applications across strains rapidly. This study designed and presented a robust workflow for developing the cross-species inducible system.

View Article and Find Full Text PDF

Oscillation of the active form of the initiator protein DnaA (ATP-DnaA) allows for the timely regulation for chromosome replication. After initiation, DnaA-bound ATP is hydrolyzed, producing inactive ADP-DnaA. For the next round of initiation, ADP-DnaA interacts with the chromosomal locus DARS2 bearing binding sites for DnaA, a DNA-bending protein IHF, and a transcription activator Fis.

View Article and Find Full Text PDF

Synthetic rational design of live-attenuated Zika viruses based on a computational model.

Nucleic Acids Res

January 2025

SynVaccine Ltd, Ramat Hachayal, 3 Golda Meir Street, Science Park, Nes Ziona 7403648, Israel.

Many viruses of the Flaviviridae family, including the Zika virus (ZIKV), are human pathogens of significant public health concerns. Despite extensive research, there are currently no approved vaccines available for ZIKV and specifically no live-attenuated Zika vaccine. In this current study, we suggest a novel computational algorithm for generating live-attenuated vaccines via the introduction of silent mutation into regions that undergo selection for strong or weak local RNA folding or into regions that exhibit medium levels of sequence conservation.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!