Purpose: Potent extracellular toxins including alpha-haemolysin, Panton-Valentine leukocidin (PVL) and toxic-shock syndrome toxin 1 (TSST-1) significantly contribute to Staphylococcus aureus pathogenesis, thus, toxin suppression is a primary focus in treatment of staphylococcal disease. S. aureus maintains complex strategies to regulate toxin expression and previous data have demonstrated that subinhibitory concentrations of beta-lactam antibiotics can adversely increase S. aureus exotoxin production. The current study evaluates the effects of subinhibitory concentrations of tedizolid, a second-generation oxazolidinone derivative, on expression of staphylococcal exotoxins in both methicillin-resistant and methicillin-sensitive S. aureus.
Methodology: S. aureus exotoxin expression levels were compared at 12 and 24 h following treatment with tedizolid, linezolid, nafcillin or vehicle control.
Results: Our findings show that the level of antibiotic required to alter toxin production was strain-dependent and corresponds with the quantity of toxin produced, but both tedizolid and linezolid could effectively reduce expression of alpha-haemolysin, PVL and TSST-1 toxin at subinhibitory concentrations. In contrast, nafcillin showed less attenuation and, in some S. aureus strains, led to an increase in toxin expression. Tedizolid consistently inhibited toxin production at a lower overall drug concentration than comparator agents.
Conclusion: Together, our data support that tedizolid has the potential to improve outcomes of infection due to its superior ability to inhibit S. aureus growth and attenuate exotoxin production.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6557147 | PMC |
http://dx.doi.org/10.1099/jmm.0.000905 | DOI Listing |
Eur J Clin Microbiol Infect Dis
December 2024
Infection and Inflammation, Department of Biotechnology, School of Integrative Biology, Central University of Tamil Nadu, Thiruvarur, Tamil Nadu, 610 005, India.
Purpose: Acinetobacter baumannii (A. baumannii) is an emerging global public health threat owing to its ability to form biofilms. Here, we evaluated 3-hydroxybenzoic acid (3-HBA), a promising organic compound, for its ability to disrupt biofilm formation and virulence attributes in clinical isolates of A.
View Article and Find Full Text PDFNPJ Biofilms Microbiomes
December 2024
Costerton Biofilm Center, Department of Immunology and Microbiology, University of Copenhagen, Copenhagen, 2200, Denmark.
The evolution of antimicrobial resistance (AMR) in biofilms, driven by mechanisms like oxidative stress, is a major challenge. This study investigates whether antioxidants (AOs) such as N-acetyl-cysteine (NAC) and Edaravone (ED) can reduce AMR in Pseudomonas aeruginosa biofilms exposed to sub-inhibitory concentrations of ciprofloxacin (CIP). In vitro experimental evolution studies were conducted using flow cells and glass beads biofilm models.
View Article and Find Full Text PDFAn Acad Bras Cienc
December 2024
Universidade CEUMA, Laboratório de Cências Biomédicas, Rua Josué Montello, 1, Renascença II, 65075-120 São Luís, MA, Brazil.
The objective of this study was to investigate the chemical composition of Syzygium aromaticum essential oil (SAEO), both as its toxicity and biological activities on Corynebacterium diphtheriae. The essential oil (EO) was obtained by hydrodistillation and verified by GC-MS. The main chemical components were eugenol (48.
View Article and Find Full Text PDFJ Appl Microbiol
December 2024
Department of Bioscience and Biotechnology, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
Aim: Ubiquitous magnesium transporter, CorA of Mycobacterium smegmatis is well known for its role in maintaining magnesium homeostasis. However, little is known about its involvement in exerting antimicrobial resistance. Here, by using molecular genetics, in vivo and in silico studies, we tried to envisage the role of CorA of M.
View Article and Find Full Text PDFInt J Biol Macromol
December 2024
Department of Mathematics and Physics "Ennio De Giorgi", University of Salento, Via Monteroni, 73100 Lecce, Italy; Institute for Microelectronics and Microsystems (IMM), CNR, Via Monteroni, 73100 Lecce, Italy.
Nanotechnology advancements have facilitated the development of eco-friendly strategies to combat bacterial infections caused by antibiotic-resistant pathogens. This study promotes a green method for the synthesis of silver nanoparticles (AgNPs) utilizing Eucalyptus globulus leaf extracts as an alternative to traditional colloidal AgNPs obtained through chemical synthesis, investigating their antibacterial efficacy against Pseudomonas aeruginosa and their impact on the expression of bacterial virulence factors (pyocyanin, pyoverdine, rhamnolipids). This work demonstrates that: i.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!