For many years, cancer therapy has appeared to be a challenging issue for researchers and physicians. By the introduction of novel methods in immunotherapy, the prospect of cancer therapy even more explained than before. Cytokine-induced killer (CIK) cell-based immunotherapy demonstrated to have potentiality in improving clinical outcomes and relieving major side effects of standard treatment options. In addition, given the distinctive features such as high safety, low toxicity effects on healthy cells, numerous clinical trials conducted on CIK cells. Due to the shortcomings that observed in CIK cell immunotherapy alone, arising a tendency to make modifications (combined modality therapy or combination therapy) including the addition of various types of cytokines, genetic engineering, combination with immune checkpoints, and so on. In this review, we have tried to bring forth the latest immunotherapy methods and their overview. We have discussed the combination therapies with CIK cells and the conducted clinical trials. This helps the future studies to use integrated therapies with CIK cells as a promising treatment of many types of cancers.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/jcb.28250 | DOI Listing |
J Transl Med
December 2024
Department of Oncology, Nanjing Jinling Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing, China.
Background: Immunotherapy utilizing dendritic cells (DCs) and cytokine-induced killer (CIK) cells is a promising treatment approach for solid tumors. This systematic review and meta-analysis aimed to evaluate the efficacy and safety of DC-CIK immunotherapy by assessing overall survival, progression-free survival, overall response rate, disease control rate, and adverse events in relevant randomized controlled trials. The results of this analysis will contribute to optimizing treatment strategies and improving cancer immunotherapy outcomes.
View Article and Find Full Text PDFBMC Immunol
December 2024
Department of Neurosurgery/Neuro-Oncology, State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-Sen University Cancer Center, Guangzhou, 510060, People's Republic of China.
Purpose: Immunotherapy is a promising treatment for cancers but should be optimized for malignant gliomas. Because of immune privilege feature of the brain, local administration of immunotherapy may be a promising strategy for malignant glioma treatment. Identification of patients who may benefit from local immunotherapy is essential.
View Article and Find Full Text PDFMol Biol Rep
December 2024
Yunnan Key Laboratory of Laboratory Medicine, Yunnan Province Clinical Research Center for Laboratory Medicine, Department of Clinical Laboratory, The First Affiliated Hospital of Kunming Medical University, Kunming, Yunnan, 650032, China.
Background: Acute myeloid leukemia (AML) is a common hematological tumor, but it is difficult to treat. DNMT1 is a DNA methyltransferase whose main function is to maintain stable DNA methylation during the DNA replication process. DNMT1 also plays an important role in AML, but its function in cytokine-induced memory-like natural killer (CIML NK) cell activity remains unclear.
View Article and Find Full Text PDFExp Oncol
December 2024
R.E. Kavetsky Institute of Experimental Pathology, Oncology and Radiobiology of the NAS of Ukraine, Kyiv, Ukraine.
Aim: To investigate the effect of bacteria of the genus Bifidobacterium and the extracellular metabolite of B. subtilis IMV B-7724 on the antitumor immune response of mice with a model tumor.
Materials And Methods: The study was conducted on Balb/c mice with transplanted solid Ehrlich adenocarcinoma (ACE).
Cell Mol Life Sci
December 2024
Cellular Neurophysiology, Center for Integrative Physiology and Molecular Medicine (CIPMM), Saarland University, 66421, Homburg, Germany.
Flower, a highly conserved protein, crucial for endocytosis and cellular fitness, has been implicated in cytotoxic T lymphocyte (CTL) killing efficiency through its role in cytotoxic granule (CG) endocytosis at the immune synapse (IS). This study explores the molecular cues that govern Flower-mediated CG endocytosis by analyzing uptake of Synaptobrevin2, a protein specific to CG in mouse CTL. Using immunogold electron microscopy and total internal fluorescence microscopy, we found that Flower translocates in a stimulus-dependent manner from small vesicles to the IS, thereby ensuring specificity in CG membrane protein recycling.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!