Raster-scan optoacoustic angiography at 532 nm wavelength with 50 μm lateral resolution at 2 mm diagnostic depth was used for quantitative characterization of neoangiogenesis in colon cancer models. Two tumor models of human colon adenocarcinoma (HT-29) and murine colon carcinoma (CT26) different in their histology and vascularization were compared. Tumors of both origins showed an inhomogeneous distribution of areas with high and low vascularization. Rapidly growing CT26 tumor demonstrated a higher rate of vessel growth from the periphery to the center. Peculiarities of the vascularity of tumor models revealed by optoacoustic imaging were confirmed by fluorescent microscopy with FITC-dextran and morphological analysis. The obtained results may be important for the investigation of tumor development and for improvement of colon cancer treatment strategies.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6275215PMC
http://dx.doi.org/10.1016/j.pacs.2018.11.005DOI Listing

Publication Analysis

Top Keywords

colon cancer
12
raster-scan optoacoustic
8
optoacoustic angiography
8
cancer models
8
tumor models
8
colon
5
angiography blood
4
blood vessel
4
vessel development
4
development colon
4

Similar Publications

Knockdown of LAMA3 enhances the sensitivity of colon cancer to oxaliplatin by regulating the Hippo-YAP pathway.

Biochim Biophys Acta Mol Basis Dis

January 2025

Department of Radiation Oncology, Zhujiang Hospital, Southern Medical University, Guangzhou City, Guangdong Province 510280, China. Electronic address:

Background: Oxaliplatin is the first-line chemotherapy for patients with colon cancer (CC). However, its resistance limits its therapeutic efficacy.

Methods: Oxaliplatin resistance-associated differentially expressed genes (DEGs) in the GSE42387 and GSE227315 datasets were identified through bioinformatics methods.

View Article and Find Full Text PDF

Polysaccharides from maggot extracts suppress colorectal cancer progression by inducing ferroptosis via HMOX1/GPX4 signaling pathway.

Int J Biol Macromol

January 2025

the Affiliated Cancer Hospital of Nanjing Medical University and Jiangsu Cancer Hospital and Jiangsu Institute of Cancer Research, Nanjing 210009, China; Jiangsu Key Laboratory of Molecular and Translational Cancer Research, 42 Baiziting Road, Xuanwu District, Nanjing 210009, China. Electronic address:

Maggots contain various kinds of polysaccharides and recent studies mostly concentrated on their anti-inflammatory functions. While the molecule mechanisms related to the polysaccharides inhibiting carcinogenesis remains unclear. Here we characterized the polysaccharides extracted from maggot (MEs) determining their anti-colon cancer potentials.

View Article and Find Full Text PDF

Colon cancer is a leading cause of cancer-related morbidity and mortality worldwide, necessitating advancements in therapeutic strategies to improve outcomes. Current treatment modalities, including surgery, chemotherapy, and radiation, are limited by systemic toxicity, low drug utilization rates, and off-target effects. Colon-targeted drug delivery systems (CDDS) offer a promising alternative by leveraging the colon's unique physiology, such as near-neutral pH and extended transit time, to achieve localized and controlled drug release.

View Article and Find Full Text PDF

Background And Purpose: Cancer is one of the most prevalent diseases in the general population, and is one of the main causes of changes in the population's illness profile. In this study, we assessed changes in the functional status and quality of life of patients in the first months of chemotherapy treatment.

Method: A prospective cohort study was carried out, collecting data from cancer patients seen at an outpatient clinic in the Midwest of Santa Catarina who had breast, lung, colon and rectum, prostate and head and neck cancer.

View Article and Find Full Text PDF

'Pseudokidney' And 'Donut' signs of Colon cancer on Point-of-Care Ultrasound.

QJM

January 2025

Gastroenterology Unit, Department of Medicine, RIPAS Hospital, Jalan Putera Al-Muhtadee Billah, Bandar Seri Begawan, BA1712, Brunei Darussalam.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!