Statistical and machine learning (ML)-based methods have recently advanced in construction of gene regulatory network (GRNs) based on high-throughput biological datasets. GRNs underlie almost all cellular phenomena; hence, comprehensive GRN maps are essential tools to elucidate gene function, thereby facilitating the identification and prioritization of candidate genes for functional analysis. High-throughput gene expression datasets have yielded various statistical and ML-based algorithms to infer causal relationship between genes and decipher GRNs. This review summarizes the recent advancements in the computational inference of GRNs, based on large-scale transcriptome sequencing datasets of model plants and crops. We highlight strategies to select contextual genes for GRN inference, and statistical and ML-based methods for inferring GRNs based on transcriptome datasets from plants. Furthermore, we discuss the challenges and opportunities for the elucidation of GRNs based on large-scale datasets obtained from emerging transcriptomic applications, such as from population-scale, single-cell level, and life-course transcriptome analyses.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6281826PMC
http://dx.doi.org/10.3389/fpls.2018.01770DOI Listing

Publication Analysis

Top Keywords

grns based
16
statistical machine
8
machine learning
8
gene regulatory
8
transcriptome datasets
8
ml-based methods
8
statistical ml-based
8
based large-scale
8
datasets
6
grns
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!