Assessing the functional connectivity (FC) of the brain has proven valuable in enhancing our understanding of brain function. Recent developments in the field demonstrated that FC fluctuates even in the resting state, which has not been taken into account by the widely applied static approaches introduced earlier. In a recent study using functional near-infrared spectroscopy (fNIRS) global dynamic functional connectivity (DFC) has also been found to fluctuate according to scale-free i.e., fractal dynamics evidencing the true multifractal (MF) nature of DFC in the human prefrontal cortex. Expanding on these findings, we performed electroencephalography (EEG) measurements in 14 regions over the whole cortex of 24 healthy, young adult subjects in eyes open (EO) and eyes closed (EC) states. We applied dynamic graph theoretical analysis to capture DFC by computing the pairwise time-dependent synchronization between brain regions and subsequently calculating the following dynamic graph topological measures: Density, Clustering Coefficient, and Efficiency. We characterized the dynamic nature of these global network metrics as well as local individual connections in the networks using focus-based multifractal time series analysis in all traditional EEG frequency bands. Global network topological measures were found fluctuating-albeit at different extent-according to true multifractal nature in all frequency bands. Moreover, the monofractal Hurst exponent was found higher during EC than EO in the alpha and beta bands. Individual connections showed a characteristic topology in their fractal properties, with higher autocorrelation owing to short-distance connections-especially those in the frontal and pre-frontal cortex-while long-distance connections linking the occipital to the frontal and pre-frontal areas expressed lower values. The same topology was found with connection-wise multifractality in all but delta band connections, where the very opposite pattern appeared. This resulted in a positive correlation between global autocorrelation and connection-wise multifractality in the higher frequency bands, while a strong anticorrelation in the delta band. The proposed analytical tools allow for capturing the fine details of functional connectivity dynamics that are evidently present in DFC, with the presented results implying that multifractality is indeed an inherent property of both global and local DFC.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6284038PMC
http://dx.doi.org/10.3389/fphys.2018.01704DOI Listing

Publication Analysis

Top Keywords

functional connectivity
16
frequency bands
12
dynamic functional
8
true multifractal
8
multifractal nature
8
dynamic graph
8
topological measures
8
global network
8
individual connections
8
frontal pre-frontal
8

Similar Publications

In the mammalian ureters, the lamina propria presents as a prominent layer of connective tissue underneath the urothelium. Despite its important structural and signaling functions, little is known how the lamina propria develops. Here, we show that in the murine ureter, the lamina propria arises at late fetal stages and massively increases by fibrocyte proliferation and collagen deposition after birth.

View Article and Find Full Text PDF

Sleep and breathing in children with Joubert syndrome and a review of other rare congenital hindbrain malformations.

Ther Adv Respir Dis

January 2025

Division of Pulmonary and Sleep Medicine, Department of Pediatrics, University of Washington School of Medicine, Seattle Children's Hospital, 4800 Sand Point Way NE, OC 7.730, Seattle, WA 98105, USA.

Background: Joubert syndrome (JS) is an autosomal recessive disorder with a distinctive mid-hindbrain malformation known as the "molar tooth sign" which involves the breathing control center and its connections with other structures. Literature has reported significant respiratory abnormalities which included hyperpnea interspersed with apneic episodes during wakefulness. Larger-scale studies looking at polysomnographic findings or subjective reports of sleep problems in this population have not yet been published.

View Article and Find Full Text PDF

Introduction: The Virginia Memory Project (VMP) is a statewide epidemiological registry for Alzheimer's disease and related disorders (ADRD) and other neurodegenerative conditions. It aims to support dementia research, policy, and care by leveraging the Centers for Disease Control (CDC) Healthy Brain Initiative (HBI) Roadmap.

Methods: To capture comprehensive data, the VMP integrates self-enrollment and automatic enrollment using Virginia's All-Payer Claims Database (APCD).

View Article and Find Full Text PDF

The efficiency of kinase inhibiting cancer therapeutics is often limited by their poor solubility in water. PEGylation is one possible strategy to improve the solubility of the drug, however, means to cleave these after reaching the target is important to make use of the therapeutic effects of the native drug. Moreover, the length of the PEG chains will have an effect on the solubility and binding.

View Article and Find Full Text PDF

Background: This study aims to elucidate the expression pattern of SERPINE1, assess its prognostic significance, and explore potential therapeutic drugs targeting this molecule.

Methods And Results: In this study, we delved into the variations in gene mutation, methylation patterns, and expression levels of SERPINE1 in head and neck squamous cell carcinoma (HNSCC) and normal tissues, leveraging comprehensive analyses of The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets. The connection between the biological function of the gene and prognosis was scrutinized through immune infiltration and enrichment analyses.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!