Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
A series of novel metronidazole aryloxy, carboxy and azole derivatives has been synthesized and their cytotoxic activities on three cancer cell lines were evaluated by MTT assay. Compounds 4m, 4l and 4d showed the most potent cytotoxic activity (ICs less than 100 µg/mL). Apoptosis was also detected for these compounds by flow cytometry. Docking studies were performed in order to propose the probable target protein. In the next step, molecular dynamics simulation was carried out on the proposed target protein, focal adhesion kinase (FAK, PDB code: 2ETM), bound to compound 4m. As, 4m showed a potent cytotoxic activity and an acceptable apoptotic effect, it can be a potential anticancer candidate that may work through inhibition of FAK.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.bmc.2018.12.003 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!