From Discovery to Bedside: Targeting the Ubiquitin System.

Cell Chem Biol

Department of Discovery Chemistry, Genentech, Inc., South San Francisco, CA 94008, USA.

Published: February 2019

AI Article Synopsis

  • The ubiquitin/proteasome system is essential for selectively degrading proteins within cells and has been a research focus for over 30 years.
  • Numerous drugs have been approved that target this system, showcasing its potential in medical treatments.
  • This review discusses various compounds at different stages of development, highlighting significant advancements and therapies related to the ubiquitin system.

Article Abstract

The ubiquitin/proteasome system is a primary conduit for selective intracellular protein degradation. Since its discovery over 30 years ago, this highly regulated system continues to be an active research area for drug discovery that is exemplified by several approved drugs. Here we review compounds in preclinical testing, clinical trials, and approved drugs, with the aim of highlighting innovative discoveries and breakthrough therapies that target the ubiquitin system.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.chembiol.2018.10.022DOI Listing

Publication Analysis

Top Keywords

ubiquitin system
8
approved drugs
8
discovery bedside
4
bedside targeting
4
targeting ubiquitin
4
system
4
system ubiquitin/proteasome
4
ubiquitin/proteasome system
4
system primary
4
primary conduit
4

Similar Publications

Chemotherapy is a potent tool against cancer, but drug resistance remains a major obstacle. To combat this, understanding the molecular mechanisms behind resistance in cancer cells and the protein expression changes driving these mechanisms is crucial. Targeting the Ubiquitin-Proteasome System (UPS) has proven effective in treating multiple myeloma and shows promise for solid tumours.

View Article and Find Full Text PDF

METTL3 inhibition promotes radiosensitivity in hepatocellular carcinoma through regulation of SLC7A11 expression.

Cell Death Dis

January 2025

School of Public Health, Wenzhou Medical University; Key Laboratory of Watershed Science and Health of Zhejiang Province, Wenzhou Medical University, Wenzhou, 325035, China.

Radiotherapy is one of the main treatment modalities for advanced hepatocellular carcinoma (HCC). Ferroptosis has been shown to promote the radiosensitivity of HCC cells, but it remains unclear whether epigenetic regulations function in this process. In this study, we found that the overexpression of METTL3 was associated with poor prognosis.

View Article and Find Full Text PDF

Calcium/calmodulin dependent protein kinase II inhibitor 1 (Camk2n1) is closely associated with a peak logarithm of odds score in quantitative trait loci for systolic blood pressure. Increased Camk2n1 mRNA expression has been specifically observed in the kidneys of hypertension mouse models. However, the precise role of Camk2n1 in the kidney remains unclear.

View Article and Find Full Text PDF

Optimized mammalian expression system for the ubiquitin E3 ligase E6AP/UBE3A.

Protein Expr Purif

January 2025

Protein Processing Section, Center for Structural Biology, Center for Cancer Research, National Cancer Institute, National Institutes of Health, Frederick, MD 21702, USA. Electronic address:

E6AP/UBE3A is the founding member of the HECT (Homologous to the E6-AP Carboxyl Terminus) ubiquitin E3 ligase family, which add ubiquitin post-translationally to protein substrates. E6AP has been structurally defined in complex with human papillomavirus (HPV) oncoprotein E6 and its gain-of-function substrate tumor suppressor p53; however, there is currently no report of E6AP being expressed and purified from mammalian cells, as studies to date have isolated E6AP from E. coli or insect cells.

View Article and Find Full Text PDF

RTP4 restricts influenza A virus infection by targeting the viral NS1 protein.

Virology

January 2025

NHC Key Laboratory of Systems Biology of Pathogens and Christophe Merieux Laboratory, Institute of Pathogen Biology, Chinese Academy of Medical Sciences, Beijing, China; National Key Laboratory of Immunity and Inflammation, Suzhou Institute of Systems Medicine, Chinese Academy of Medical Sciences & Peking Union Medical College, Suzhou, Jiangsu, 215123, China. Electronic address:

The influenza A virus evades the host innate immune response to establish infection by inhibiting RIG-I activation through its nonstructural protein 1 (NS1). Here, we reported that receptor-transporting protein 4 (RTP4), an interferon-stimulated gene (ISG), targets NS1 to inhibit influenza A virus infection. Depletion of RTP4 significantly increased influenza A virus multiplication, while NS1-deficient viruses were unaffected.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!