Adhesive systems are resin-based materials that reach their final mechanical properties through a polymerization process. Previous literature correlated the failure of the adhesive interface to low polymer setting. Adhesives systems are elaborate mixtures of different molecules of both hydrophilic and hydrophobic nature, included in the formulation to adequately infiltrate the complex dental substrate or added to prolong the stability of the adhesive layer over time. Each adhesive component may influence the polymerization reaction of the material. Photopolymerization is a complex reaction that has several clinical implications, and besides the material composition, it is influenced by multiple factors, including the substrate characteristics, the operator technique, and the light cure unit properties. This review is focused on the analysis of factors that have a potential role in the setting of adhesive materials and thus the ultimate characteristics of the adhesive layer and the stability of the resin-dentin interface.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.dental.2018.11.012 | DOI Listing |
Polymers (Basel)
January 2025
Department of Advanced Materials Engineering for Information and Electronics, Kyung Hee University, Yongin 17104, Republic of Korea.
The adhesion between metals and polymers plays a pivotal role in numerous industrial applications, especially within the automotive and aerospace sectors, where there is a growing demand for materials that are both lightweight and durable. This study introduces an innovative technique to improve the adhesion between a metal and a polymer in hybrid structures through the synergistic use of anodization and plasma treatment. By forming a nanoporous oxide layer on aluminum surfaces, anodization enhances the interface for polymer binding.
View Article and Find Full Text PDFSensors (Basel)
January 2025
School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
This paper proposes a hierarchical framework-based solution to address the challenges of vehicle state estimation and lateral stability control in four-wheel independent drive electric vehicles. First, based on a three-degrees-of-freedom four-wheel vehicle model combined with the Magic Formula Tire model (MF-T), a hierarchical estimation method is designed. The upper layer employs the Kalman Filter (KF) and Extended Kalman Filter (EKF) to estimate the vertical load of the wheels, while the lower layer utilizes EKF in conjunction with the upper-layer results to further estimate the lateral forces, longitudinal velocity, and lateral velocity, achieving accurate vehicle state estimation.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
State Key Laboratory of Powder Metallurgy, Central South University, Changsha 410083, China.
To provide insight into the interface structure in Ti particle-reinforced Mg matrix composites, this study investigates the inherent Mg/Ti interface structure formed during the solidification of supercooled Mg melt on a (0001)Ti substrate using ab initio molecular dynamics (AIMD) simulations and density function theory (DFT) calculation. The resulting interface exhibits an orientation relationship of 0001Mg//0001Ti with a lattice mismatch of approximately 8%. Detailed characterizations reveal the occurrences of 0001Mg plane rotation and vacancy formation to overcome the lattice mismatch at the inherent Mg/Ti interface while allowing Mg atoms to occupy the energetically favorable hollow sites above the Ti atomic layer.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
Division of Biomaterials, School of Dentistry, University of Alabama at Birmingham, Birmingham, AL 35209, USA.
Two 3D-printed crown materials (Crown and Ceramic Crown) were examined to determine the best surface treatment and primers for bonding. Discs of the two materials were printed and mounted with their "intaglio" surfaces untouched. Half the specimens from each group were sandblasted with 50 µm alumina.
View Article and Find Full Text PDFMicromachines (Basel)
January 2025
Department of Astronautical, Electrical and Energy Engineering, University of Rome "La Sapienza", Via Eudossiana 18, 00184 Rome, Italy.
The propagation of interface acoustic waves (IAWs) in 128° YX-LiNbO/SU-8/overcoat structures was theoretically studied and experimentally investigated for different types of overcoat materials and thicknesses of the SU-8 adhesive layer. Three-dimensional finite element method analysis was performed using Comsol Multiphysics software to design an optimized multilayer configuration able to achieve an efficient guiding effect of the IAW at the LiNbO/overcoat interface. Numerical analysis results showed the following: (i) an overcoat faster than the piezoelectric half-space ensures that the wave propagation is confined mainly close to the surface of the LiNbO, although with minimal scattering in the overcoat; (ii) the presence of the SU-8, in addition to performing the essential function of an adhesive layer, can also promote the trapping of the acoustic energy toward the surface of the piezoelectric substrate; and (iii) the electromechanical coupling efficiency of the IAW is very close to that of the surface acoustic wave (SAW) along the bare LiNbO half-space.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!