The inevitability of change.

Clin Dermatol

Department of Dermatology, Mayo Clinic College of Medicine and Science, Rochester, Minnesota, USA. Electronic address:

Published: February 2019

Change is an absolute so long as time does not stand still. We should expect it, embrace it, and try to predict its direction. Dermatology, as a specialty practice, has been changing rapidly over the past 30 years concurrent with the changes in medicine. What are these changes, how did they come about, and what may be the consequences? The goal of this review is to follow the march of time, as we move from one era to the other in step with what is happening in the world as a whole and the United States in particular. The growth of our specialty, Dermatology, is divided into 3 eras which are quite different in generational cultures. The first era spanning the 1980s and 1990s is dubbed as "old school." The second era begins with the new century, 2000 until today. This era will forever be remembered as the business era, the rise of elite cultures, and the losses and threats to academia. The third era begins now; it is that of technology which is fast progressing into the future. One can theoretically project what may occur during this technologic revolution and the directions in medicine as a whole. Dermatology can be at the forefront of this era or it could be lost as a whole if we do nothing to keep up. These eras are based on my personal experience as a dermatologist in a large academic institution in the United States and may not apply to other communities or societies elsewhere. The United States serves as a good example of a western technologically oriented society that is often emulated by others.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.clindermatol.2018.09.003DOI Listing

Publication Analysis

Top Keywords

united states
12
era
7
inevitability change
4
change change
4
change absolute
4
absolute long
4
long time
4
time stand
4
stand expect
4
expect embrace
4

Similar Publications

Developing a Sleep Algxorithm to Support a Digital Medicine System: Noninterventional, Observational Sleep Study.

JMIR Ment Health

December 2024

Otsuka Pharmaceutical Development & Commercialization, Inc, 508 Carnegie Center Drive, Princeton, NJ, 08540, United States, 1 609 535 9035.

Background: Sleep-wake patterns are important behavioral biomarkers for patients with serious mental illness (SMI), providing insight into their well-being. The gold standard for monitoring sleep is polysomnography (PSG), which requires a sleep lab facility; however, advances in wearable sensor technology allow for real-world sleep-wake monitoring.

Objective: The goal of this study was to develop a PSG-validated sleep algorithm using accelerometer (ACC) and electrocardiogram (ECG) data from a wearable patch to accurately quantify sleep in a real-world setting.

View Article and Find Full Text PDF

Free Carrier Auger-Meitner Recombination in Monolayer Transition Metal Dichalcogenides.

Nano Lett

December 2024

Wyant College of Optical Sciences, University of Arizona, 1630 East University Boulevard, Tucson, Arizona 85721, United States.

Microscopic many-body models based on inputs from first-principles density functional theory are used to calculate the carrier losses due to free carrier Auger-Meitner recombination (AMR) processes in Mo- and W-based monolayer transition metal dichalcogenides as a function of the carrier density, temperature, and dielectric environment. Despite the exceptional strength of Coulomb interaction in the two-dimensional materials, the AMR losses are found to be similar in magnitude to those in conventional III-V-based quantum wells for the same wavelengths. Unlike the case in III-V materials, the losses show nontrivial density dependencies due to the fact that bandgap renormalizations on the order of hundreds of millielectronvolts can bring higher bands into or out of resonance with the optimal energy level for the AMR transition, approximately one bandgap from the lowest band.

View Article and Find Full Text PDF

Background: Intravascular ultrasound (IVUS) use in aortic endovascular interventions, including thoracic endovascular aneurysm repair (TEVAR) and endovascular aneurysm repair (EVAR), may have similar benefits to those seen in coronary and peripheral interventions, but limited utilization and outcome data exist.

Methods: Centers for Medicare and Medicaid Services claims data were used to identify patients undergoing TEVAR and EVAR from 2016 to 2023. Utilization trends were stratified by region, urbanicity, distressed communities index, community versus academic center, Medicare versus dual enrollment status, indication, urgency, and presence of dissection with malperfusion.

View Article and Find Full Text PDF

The Unusual Role of Ribonuclease L in Innate Immunity.

Wiley Interdiscip Rev RNA

December 2024

Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, Maryland, USA.

Ribonuclease L is an endonuclease that is activated as part of the dsRNA-driven innate immune response. Active RNase L cleaves pathogenic RNAs as a way to eliminate infections. However, there are additional and unexpected ways that RNase L causes changes in the host that promote an immune response and contribute to its role in host defense.

View Article and Find Full Text PDF

Background: Anxiety and depression represent prevalent yet frequently undetected mental health concerns within the older population. The challenge of identifying these conditions presents an opportunity for artificial intelligence (AI)-driven, remotely available, tools capable of screening and monitoring mental health. A critical criterion for such tools is their cultural adaptability to ensure effectiveness across diverse populations.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!