We examined the developmental differences in motor control and learning of a two-segment movement. One hundred and five participants (53 female) were divided into three age groups (7-8 years, 9-10 years and 19-27 years). They performed a two-segment movement task in four conditions (full vision, fully disturbed vision, disturbed vision in the first movement segment and disturbed vision in the second movement segment). The results for movement accuracy and overall movement time show that children, especially younger children, are more susceptible to visual perturbations than adults. The adults' movement time in one of the movement segments could be increased by disturbing the vision of the other movement segment. The children's movement time for the second movement segment increased when their vision of the first movement segment was disturbed. Disturbing the vision of the first movement segment decreased the percentage of central control of the second movement in younger children, but not in the other two age groups. The children's normalized jerk was more easily increased by visual perturbations. The children showed greater improvement after practice in the conditions of partial vision disturbance. As the participants' age increased, practice tended to improve their feedforward motor control rather than their feedback motor control. These results suggest that children's central movement control improves with age and practice. We discuss the theoretical implications and practical significance of the differential effects of visual perturbation and movement segmentation upon motor control and learning from a developmental viewpoint.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/desc.12789 | DOI Listing |
Eur J Trauma Emerg Surg
January 2025
Julius Wolff Institute, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Augustenburger Platz 1, 13353, Berlin, Germany.
Background: Flail chest (FC) injuries are segmental osseous injuries of the thorax that typically result from high-energy blunt trauma and regularly occur in multiple trauma (MT) patients. FC injuries are associated with paradoxical chest wall movements and, thus, have a high risk of respiratory insufficiency or even death. An increasing number of studies recommend an early surgical stabilization of FC injuries, but a definite trigger that would indicate surgery has, thus far, not been identified.
View Article and Find Full Text PDFInvestigating muscle architecture in static and dynamic conditions is essential to understand muscle function and muscle adaptations. Muscle architecture analysis, primarily through extended field-of-view ultrasound imaging, offers high reliability at rest but faces limitations during dynamic conditions. Traditional methods often involve "best fitting" straight lines to track muscle fascicles, leading to possible errors, especially with longer fascicles or those with nonlinear paths.
View Article and Find Full Text PDFNat Commun
January 2025
Committee on Development, Regeneration and Stem Cell Biology, The University of Chicago, Chicago, IL, USA.
Prehensile arms are among the most remarkable features of the octopus, but little is known about the neural circuitry controlling arm movements. Here, we report on the cellular and molecular organization of the arm nervous system, focusing on its massive axial nerve cords (ANCs). We found that the ANC is segmented.
View Article and Find Full Text PDFWearable Technol
November 2024
Department of Kinesiology, Iowa State University, Ames, IA, USA.
Placing an inertial measurement unit (IMU) at the 5th lumbar vertebra (L5) is a frequently employed method to assess the whole-body center of mass (CoM) motion during walking. However, such a fixed position approach does not account for instantaneous changes in body segment positions that change the CoM. Therefore, this study aimed to assess the congruence between CoM accelerations obtained from these two methods.
View Article and Find Full Text PDFBiol Lett
January 2025
School of Biological and Environmental Sciences, Liverpool John Moores University, Liverpool, UK.
Dinosaur locomotor biomechanics are of major interest. Locomotion of an animal affects many, if not most, aspects of life reconstruction, including behaviour, performance, ecology and appearance. Yet locomotion is one aspect of non-avian dinosaurs that we cannot directly observe.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!