Contents Summary 1190 I. Introduction 1190 II. Rust fungi: a diverse and serious threat to agriculture 1191 III. The different facets of rust life cycles and unresolved questions about their evolution 1191 IV. The biology of rust infection 1192 V. Rusts in the genomics era: the ever-expanding list of candidate effector genes 1195 VI. Functional characterization of rust effectors 1197 VII. Putting rusts to sleep: Pucciniales research outlooks 1201 Acknowledgements 1202 References 1202 SUMMARY: Rust fungi (Pucciniales) are the largest group of plant pathogens and represent one of the most devastating threats to agricultural crops worldwide. Despite the economic importance of these highly specialized pathogens, many aspects of their biology remain obscure, largely because rust fungi are obligate biotrophs. The rise of genomics and advances in high-throughput sequencing technology have presented new options for identifying candidate effector genes involved in pathogenicity mechanisms of rust fungi. Transcriptome analysis and integrated bioinformatics tools have led to the identification of key genetic determinants of host susceptibility to infection by rusts. Thousands of genes encoding secreted proteins highly expressed during host infection have been reported for different rust species, which represents significant potential towards understanding rust effector function. Recent high-throughput in planta expression screen approaches (effectoromics) have pushed the field ahead even further towards predicting high-priority effectors and identifying avirulence genes. These new insights into rust effector biology promise to inform future research and spur the development of effective and sustainable strategies for managing rust diseases.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/nph.15641 | DOI Listing |
Sensors (Basel)
December 2024
Institute of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba 305-8577, Japan.
Global warming and extreme climate conditions caused by unsuitable temperature and humidity lead to coffee leaf rust () diseases in coffee plantations. Coffee leaf rust is a severe problem that reduces productivity. Currently, pesticide spraying is considered the most effective solution for mitigating coffee leaf rust.
View Article and Find Full Text PDFPlants (Basel)
December 2024
Plant Protection Institute, Gansu Academy of Agricultural Sciences, Lanzhou 730070, China.
Wheat stripe rust, caused by a biotrophic, obligate fungus f. sp. (), is a destructive wheat fungal disease that exists worldwide and caused huge yield reductions during pandemic years.
View Article and Find Full Text PDFInt J Mol Sci
December 2024
Key Laboratory of Grain Crop Genetic Resources Evaluation and Utilization, Institute of Crop Sciences, Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Southern corn rust (SCR), caused by the obligate biotrophic fungus Underw., represents one of the most devastating threats to maize production, potentially resulting in yield losses exceeding 50%. Due to global climate change and cropping practices, epiphytotics of SCR have been increasingly reported, and are progressively spreading from tropical and subtropical maize growing areas to higher latitude areas.
View Article and Find Full Text PDFPlant Dis
January 2025
CSIRO, Agriculture and Food, Canberra, Australian Capital Territory, Australia;
Crown rust caused by the basidiomycete fungus f. sp. () results in significant crop losses worldwide.
View Article and Find Full Text PDFPlant Genome
March 2025
Department of Entomology and Plant Pathology, Oklahoma State University, Stillwater, Oklahoma, USA.
Leaf rust, caused by Puccinia triticina (Pt), is a serious constraint to wheat production. Developing resistant varieties is the best approach to managing this disease. Wheat leaf rust resistance (Lr) genes have been classified into either all-stage resistance (ASR) or adult-plant resistance (APR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!