Autoantibodies against the second extracellular loop of β-adrenergic receptor (β-AA) have been shown to be involved in the development of cardiovascular diseases. Recently, there has been considerable interest in strategies to remove these autoantibodies, particularly therapeutic peptides to neutralize β-AA. Researchers are investigating the roles of cyclic peptides that mimic the structure of relevant epitopes on the β-AR-EC in a number of immune-mediated diseases. Here, we used a cyclic peptide, namely, RD808, to neutralize β-AA, consequently alleviating β-AA-induced myocardial injury. We investigated the protective effects of RD808 on the myocardium both in vitro and in vivo. RD808 was found to increase the survival rate of cardiomyocytes; furthermore, it decreased myocardial necrosis and apoptosis and improved the cardiac function of BalB/c mice in a β-AA transfer model. In vitro and in vivo experiments showed that myocardial autophagy was increased in the presence of RD808, which might contribute to its cardioprotective effects. Our findings indicate that RD808 reduced myocardial injury induced by β-AA.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1007/s00380-018-1321-3 | DOI Listing |
Stem Cell Rev Rep
January 2025
Institute of Biophysics, Chinese Academy of Sciences, Beijing, 100101, China.
Background: The hypobaric hypoxic atmosphere can cause adverse reactions or sickness. The purpose of this study was to explore the preventive effect and mechanism of human umbilical cord mesenchymal stem cells (hUC-MSCs) on acute pathological injury in mice exposed to high-altitude.
Methods: We pretreated C57BL/6 mice with hUC-MSCs via the tail vein injection, and then the mice were subjected to hypobaric hypoxic conditions for five days.
Cell Signal
January 2025
Clinic School of Medicine and Affiliated Hospital, North China University of Science and Technology, Tangshan, China. Electronic address:
Purpose: This study aims to investigate whether zinc ion (Zn) alleviates myocardial ischemia-reperfusion injury (MIRI) through the MAM-associated signaling pathway and to explore its impact on ERS and calcium overload.
Methods: H9C2 cells were cultured in a DMEM supplemented with 10 % fetal bovine serum and 1 % antibiotic solution. A MIRI model was established through simulated ischemia and reoxygenation with Zn treatment in a complete medium.
Steroids
January 2025
Department of Pharmaceutical Toxicology, School of Pharmacy, China Medical University, Shenyang 110122, China. Electronic address:
Due to the difference of estrogen levels in different phases of estrous cycle, it is necessary to exclude the influence of endogenous estrogen when studying the cardiovascular effects of estrogen and its analogues. In this study, the ischemia/reperfusion (I/R) injury of isolated heart were investigated in female rats during different phases of estrous cycle with male rats as comparison. The results indicated that the estrogen content in blood of rats during metestrus and diestrus (MD) was lower than those during proestrus and estrous (PE).
View Article and Find Full Text PDFRedox Rep
December 2025
Department of Cardiology, Fujian Medical University Union Hospital, Fuzhou, Fujian, People's Republic of China.
Objective: Myocardial ischemia-reperfusion injury (MIRI) is a highly complex disease with high morbidity and mortality. Studying the molecular mechanism of MIRI and discovering new targets are crucial for the future treatment of MIRI.
Methods: We constructed the MIRI rat model and hypoxia/reoxygenation (H/R) injury cardiomyocytes model.
Am J Prev Cardiol
March 2025
Ahmanson-UCLA Cardiomyopathy Center, Division of Cardiology, University of California Los Angeles, Los Angeles, CA, USA.
Background: Sodium-glucose cotransporter 2 inhibitors (SGLT2i) have shown benefits in improving cardiovascular (CV) outcomes in patients with heart failure (HF) and may mitigate symptom progression in myocardial infarction (MI). However, their effectiveness in patients with type 2 diabetes and MI undergoing percutaneous coronary intervention (PCI) is unclear.
Methods: To identify eligible studies, a comprehensive search of electronic databases, PubMed, Cochrane Library, Scopus and Embase, was conducted from inception until May 2024.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!