The use of liquid crystalline nanoparticles as potential agrochemical delivery agents or adjuvant systems is gaining traction due to the possibility that the systems can enhance penetration of the active and increase adhesion of the formulation to the leaf, increasing overall efficacy and decreasing the harmful environmental impact. However the interaction between liquid crystalline nanoparticles and active products is not well understood. Using small angle X-ray scattering we investigated the structural changes that occur to liquid crystalline nanoparticles upon addition of three common herbicides, 2,4-D 2-ethylhexyl ester, bromoxynil octanoate and haloxyfop-p-methyl ester active agrochemicals in the form of emulsions. It was found that the hydrophobic herbicides induced structural changes to varying degrees when pre-mixed with liquid crystalline forming lipids (phytantriol and glycerol monooleate) and also during dynamic mixing as emulsions.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.11.063 | DOI Listing |
ACS Biomater Sci Eng
January 2025
Strathclyde Institute of Pharmacy and Biomedical Sciences, University of Strathclyde, 161 Cathedral St., Glasgow G4 0RE,Scotland,U.K.
Silk has emerged as an interesting candidate among protein-based nanocarriers due to its favorable properties, including biocompatibility and a broad spectrum of processing options to tune particle critical quality attributes. The silk protein conformation during storage in the middle silk gland of the silkworm is modulated by various factors, including the most abundant metallic ion, calcium ion (Ca). Here, we report spiking of liquid silk with calcium ions to modulate the silk nanoparticle size.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Department of Physics, Chair for Functional Materials, TUM School of Natural Sciences, Technical University of Munich, James-Franck-Str. 1, 85748 Garching, Germany.
Solid additives have garnered significant attention due to their numerous advantages over liquid additives. This study explores the potential of the green-fluorescent conjugated polymer denoted Atums Green as a solid additive in green-solvent-based PBDB-TF-T1:BTP-4F-12 solar cells. Even tiny amounts of Atums Green doping significantly improve the device performance.
View Article and Find Full Text PDFJ Chem Theory Comput
January 2025
Department of Chemistry-Ångström Laboratory, Uppsala University, Lägerhyddsvägen 1, P.O. Box 538, 75121 Uppsala, Sweden.
Electrochemical energy storage and conversion play increasingly important roles in electrification and sustainable development across the globe. A key challenge therein is to understand, control, and design electrochemical energy materials with atomistic precision. This requires inputs from molecular modeling powered by machine learning (ML) techniques.
View Article and Find Full Text PDFNat Commun
January 2025
School of Chemical and Biological Engineering, Institute of Chemical Processes, Seoul National University, Seoul, Republic of Korea.
Colloidal nanocrystals inherently undergo structural changes during chemical reactions. The robust structure-property relationships, originating from their nanoscale dimensions, underscore the significance of comprehending the dynamic structural behavior of nanocrystals in reactive chemical media. Moreover, the complexity and heterogeneity inherent in their atomic structures require tracking of structural transitions in individual nanocrystals at three-dimensional (3D) atomic resolution.
View Article and Find Full Text PDFJ Pharm Sci
January 2025
Department of Synthetic Molecule Pharmaceutical Sciences, Genentech, Inc., 1 DNA Way, South San Francisco, CA 94080, USA. Electronic address:
It is desirable but remains challenging to develop high drug load amorphous solid dispersions (ASDs) without compromising their quality attributes and bio-performance. In this work, we investigated the impacts of formulation variables, such as drug loading (DL) and polymer type, on dissolution behavior, diffusive flux, and in vitro drug absorption of ASDs of a high T compound, GDC-6893. ASDs with two polymers (HPMCAS and PVPVA) and various DLs (20 - 80%) were produced by spray drying and their drug-polymer miscibility was evaluated using solid-state nuclear magnetic resonance (ssNMR).
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!