The pharmaceutical 17α-ethynylestradiol (EE2) and the industrial chemical perfluorooctane sulfonate (PFOS) are organic contaminants frequently detected in freshwater environments. It is hypothesized that hydrophobic organic contaminants can sorb to dissolved organic matter (DOM) and this may reduce the toxicity of these contaminants by reducing the contaminants' bioavailability. To investigate this hypothesis, H nuclear magnetic resonance (NMR)-based metabolomics was used to determine how the metabolome of Daphnia magna changes when a range of DOM concentrations are added during EE2 and PFOS exposure experiments. D. magna were exposed for 48 h to sub-lethal concentrations of 1 mg/L EE2 or 30 mg/L PFOS in the presence of 0, 1, 2, 3 and 4 mg dissolved organic carbon (DOC)/L. EE2 exposure resulted in increased amino acids and decreased glucose in D. magna. All DOM concentrations were able to lessen these metabolite disturbances from EE2 exposure, likely due to reductions in the bioavailability of EE2 through interactions with DOM. Exposure to PFOS resulted in decreased amino acids, and the presence of 1 mg DOC/L did not alter this metabolic response. However, PFOS exposure with the higher DOM concentrations resulted in a different pattern of metabolite changes which may be due to combined impacts of PFOS and DOM on the metabolome or due to an increase in PFOS bioavailability and uptake in D. magna. These results suggest that the concentration of DOM influences the sensitive biochemical changes in organisms that occur during acute sub-lethal exposure to organic contaminants.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.ecoenv.2018.12.008 | DOI Listing |
Commun Biol
January 2025
Marine Science Institute/Department of Ecology, Evolution and Marine Biology, University of California, Santa Barbara, CA, USA.
Oxygen consumption by oceanic microbes can predict respiration (CO production) but requires an assumed respiratory quotient (RQ; ΔO/ΔCO). Measured apparent RQs (ARQs) can be impacted by various processes, including nitrification and changes in dissolved organic matter (DOM) composition, leading to discrepancies between ARQ and actual RQ. In DOM remineralization experiments conducted in the eastern North Atlantic Ocean, ARQs averaged 1.
View Article and Find Full Text PDFBioresour Technol
January 2025
College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China; Key Laboratory of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China. Electronic address:
Thermophilic bacteria (TB) pretreatment is an efficient and environmentally friendly way for accelerating sludge hydrolysis. In this study, a complete comparison of the hydrolysis performance of Bacillus sp. AT07-1 (X1), Parageobacillus toebii X2 (X2), Geobacillus kaustophilus X3 (X3) and Parageobacillus toebii R-35642 (X4) was performed.
View Article and Find Full Text PDFEnviron Res
January 2025
College of Environmental Science and Engineering, Hunan University, Changsha 410082, P.R. China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, P.R. China. Electronic address:
Internal nutrient cycling, especially phosphorus (P), is of great influence in lake eutrophication. Dissolved organic matter (DOM) and microorganisms are ubiquitous in the sediments and closely associated with P-cycling. However, the underlying interactions of DOM, microorganisms and P in floodplain lake area with different hydrological characteristics remain scarce.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Institute for Sustainability, Energy and Environment, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA.
Critical source areas (CSAs) can act as a source of phosphorus (P) in surface waters by releasing soil P to porewater during frequent rainfall events. The extent of P release under short-term, frequent submergence has not been systematically studied in CSAs in New Zealand. A study was conducted to explore the potential of three contrasting dairy and sheep/beef farm soils (Recent, Pallic and Allophanic soils) to release P to porewater and pondwater under short-term and frequent submergence.
View Article and Find Full Text PDFJ Hazard Mater
January 2025
Guangdong Basic Research Center of Excellence for Ecological Security and Green Development, Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China; Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China.
Increasing evidence has highlighted the effects of biodegradable microplastics (MPs) on soil organic matter (SOM), but the role of soil type and incubation time remains unclear. This study investigated the effects of polylactic acid microplastics (PLA-MPs) on the amount and molecular composition of dissolved organic matter (DOM) across three paddy soil types (Ferralsol, Alfisol, and Mollisol) and incubation times, revealing soil-specific patterns in DOM transformation: PLA-MPs reduced DOM content in Ferralsol and Alfisol by 29.3-68.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!