Objective: Hypothalamic glucose sensing (HGS) initiates insulin secretion (IS) via a vagal control, participating in energy homeostasis. This requires mitochondrial reactive oxygen species (mROS) signaling, dependent on mitochondrial fission, as shown by invalidation of the hypothalamic DRP1 protein. Here, our objectives were to determine whether a model with a HGS defect induced by a short, high fat-high sucrose (HFHS) diet in rats affected the fission machinery and mROS signaling within the mediobasal hypothalamus (MBH).

Methods: Rats fed a HFHS diet for 3 weeks were compared with animals fed a normal chow. Both in vitro (calcium imaging) and in vivo (vagal nerve activity recordings) experiments to measure the electrical activity of isolated MBH gluco-sensitive neurons in response to increased glucose level were performed. In parallel, insulin secretion to a direct glucose stimulus in isolated islets vs. insulin secretion resulting from brain glucose stimulation was evaluated. Intra-carotid glucose load-induced hypothalamic DRP1 translocation to mitochondria and mROS (HO) production were assessed in both groups. Finally, compound C was intracerebroventricularly injected to block the proposed AMPK-inhibited DRP1 translocation in the MBH to reverse the phenotype of HFHS fed animals.

Results: Rats fed a HFHS diet displayed a decreased HGS-induced IS. Responses of MBH neurons to glucose exhibited an alteration of their electrical activity, whereas glucose-induced insulin secretion in isolated islets was not affected. These MBH defects correlated with a decreased ROS signaling and glucose-induced translocation of the fission protein DRP1, as the vagal activity was altered. AMPK-induced inhibition of DRP1 translocation increased in this model, but its reversal through the injection of the compound C, an AMPK inhibitor, failed to restore HGS-induced IS.

Conclusions: A hypothalamic alteration of DRP1-induced fission and mROS signaling in response to glucose was observed in HGS-induced IS of rats exposed to a 3 week HFHS diet. Early hypothalamic modifications of the neuronal activity could participate in a primary defect of the control of IS and ultimately, the development of diabetes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6358535PMC
http://dx.doi.org/10.1016/j.molmet.2018.11.007DOI Listing

Publication Analysis

Top Keywords

drp1 translocation
16
insulin secretion
16
hfhs diet
16
mros signaling
12
glucose
9
protein drp1
8
hypothalamic glucose
8
glucose sensing
8
hypothalamic drp1
8
rats fed
8

Similar Publications

Microglial-mediated neuroinflammation is crucial in the pathophysiological mechanisms of secondary brain injury (SBI) following intracerebral hemorrhage (ICH). Mitochondria are central regulators of inflammation, influencing key pathways such as alternative splicing, and play a critical role in cell differentiation and function. Mitochondrial ATP synthase coupling factor 6 (ATP5J) participates in various pathological processes, such as cell proliferation, migration, and inflammation.

View Article and Find Full Text PDF

The circadian clock regulates mitochondrial function and affects time-dependent metabolic responses to exercise. The present study aimed to determine the effects of aerobic exercise timing at the light-dark phase on the proteins expression of the circadian clock, mitochondrial dynamics, and, NAD-SIRT1-PPARα axis in skeletal muscle of high-fat diet-induced diabetic mice. In this experimental study, thirty male mice were randomly assigned into two groups based on time: the early light phase, ZT3, and the early dark phase, ZT15, and three groups at each time: (1) Healthy Control (HC), (2) Diabetic Control (DC), and (3) Diabetic + Exercise (DE).

View Article and Find Full Text PDF

Mechanism of miR-130b-3p in relieving airway inflammation in asthma through HMGB1-TLR4-DRP1 axis.

Cell Mol Life Sci

December 2024

Jilin Key Laboratory for Immune and Targeting Research on Common Allergic Diseases, Yanbian University, Yanji, 133002, People's Republic of China.

Asthma is a chronic inflammatory respiratory disease characterized by recurrent breathing difficulties caused by airway obstruction and hypersensitivity. Although there is diversity in their specific mechanisms, microRNAs (miRNAs) have a significant impact on the development of asthma. Currently, the contribution of miR-130b-3p to asthma remains elusive.

View Article and Find Full Text PDF

Mitochondrial homeostasis plays a crucial role in degenerative joint diseases, including cartilaginous endplate (CEP) degeneration. To date, research into mitochondrial dynamics in IVDD is at an early stage. Since Piezo1 is a novel Ca-permeable channel, we asked whether Piezo1 could modulate mitochondrial fission through Ca signalling during CEP degeneration.

View Article and Find Full Text PDF

Neurotoxicity of Realgar: Crosstalk Between UBXD8-DRP1-Regulated Mitochondrial Fission and PINK1-Parkin-Mediated Mitophagy.

Mol Neurobiol

November 2024

Key Laboratory of Environmental Stress and Chronic Disease Control and Prevention, Ministry of Education, China Medical University, Shenyang, Liaoning, 110122, China.

Article Synopsis
  • * Arsenic promotes mitochondrial fission through UBXD8-mediated translocation of DRP1, leading to mitophagy activation but ultimately resulting in apoptosis and neurobehavioral issues in rats.
  • * The research highlights the interaction between mitochondrial fission and mitophagy in realgar-induced neurotoxicity, emphasizing the significant role of UBXD8 in the neurotoxic mechanism of realgar.
View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!