Studies on the molecular dynamics of acetylated oligosaccharides of different topologies (linear versus cyclic).

Carbohydr Polym

Silesian Center for Education and Interdisciplinary Research, University of Silesia, ul. 75 Pulku Piechoty 1A, 41-500 Chorzow, Poland; Institute of Physics, University of Silesia, ul. 75 Pulku Piechoty 1, 41-500 Chorzow, Poland.

Published: February 2019

In this paper, the molecular dynamics and thermal properties of representative acetylated linear and cyclic oligosaccharides: acTRE, acRAF, acSTA, ac-α-CD, ac-β-CD, ac-γ-CD, have been investigated by using broadband dielectric spectroscopy and differential scanning calorimetry. We found that there are marked differences in the dynamics of the structural and secondary relaxation processes in both groups of materials. Just to mention a variation in the distribution of the structural relaxation times as well as different evolutions of the glass transition temperature (T) and fragility (m) versus molecular weight (M), which seem to be affected by the shape of the molecule, strain in the carbohydrate ring and mobility of side acetyl moieties.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.carbpol.2018.10.118DOI Listing

Publication Analysis

Top Keywords

molecular dynamics
8
studies molecular
4
dynamics acetylated
4
acetylated oligosaccharides
4
oligosaccharides topologies
4
topologies linear
4
linear versus
4
versus cyclic
4
cyclic paper
4
paper molecular
4

Similar Publications

Despite numerous studies of water structures at the two-dimensional water-solid interfaces, much less is known about the phase behaviors of water at the one-dimensional (1D) liquid-solid interface. In this work, the 1D interfacial water phase behavior on the outer surface of carbon nanotube-like (CNT-like) models is studied by tuning the Lennard-Jones potential parameter ε of the surface atoms at various temperatures. Extensive molecular dynamics simulations show that ice nanotubes (INTs) can be spontaneously formed on CNT-like model surfaces without nanoconfinement.

View Article and Find Full Text PDF

Hydration free energy (HFE) of molecules is a fundamental property having importance throughout chemistry and biology. Calculation of the HFE can be challenging and expensive with classical molecular dynamics simulation-based approaches. Machine learning (ML) models are increasingly being used to predict HFE.

View Article and Find Full Text PDF

Pectins underpin the assembly, molecular architecture, and physical properties of plant cell walls and through their effects on cell growth and adhesion influence many aspects of plant development. They are some of the most dynamic components of plant cell walls, and pectin remodeling and degradation by pectin-modifying enzymes can drive developmental programming via physical effects on the cell wall and the generation of oligosaccharides that can act as signaling ligands. Here, we introduce pectin structure and synthesis and discuss pectin functions in plants.

View Article and Find Full Text PDF

Odyssey in the Wonderland of Chemical Dynamics.

Annu Rev Phys Chem

January 2025

1Institute of Atomic and Molecular Sciences, Academia Sinica, Taipei, Taiwan;

This is a recollection of my scientific trajectory. When I look back, I consider myself to be very fortunate for being able to do something I love and on topics of my own will. I am not a competitive person and tend to shy away from the limelight.

View Article and Find Full Text PDF

ConspectusA key challenge in modern chemistry research is to mimic life-like functions using simple molecular networks and the integration of such networks into the first functional artificial cell. Central to this endeavor is the development of signaling elements that can regulate the cell function in time and space by producing entities of code with specific information to induce downstream activity. Such artificial signaling motifs can emerge in nonequilibrium systems, exhibiting complex dynamic behavior like bistability, multistability, oscillations, and chaos.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!