Topical ophthalmic drugs are the most commonly used dosage form to treat diseases of the anterior segment of the eye. Although this dosage form has the advantages of ease of application, small volume dose, and rapid action and is largely devoid of systemic adverse effects, the bioavailability is low due to pre-corneal anatomical barriers and the nature of the drug formulation itself. Some complex generic formulations (suspensions, ointments, gels) for topical ophthalmic products face impediments to rapid regulatory approval because of the complex nature of the formulations and difficulties in determining bioequivalence with the innovator product. Clinical endpoint bioequivalence studies of ophthalmic products in humans are challenging due to inaccessibility of internal compartments of eye, large inter-subject variability that reduces study sensitivity, patient safety issues, and the prohibitively high costs of these types of clinical studies. Because of its ocular anatomical similarity to human eye, rabbits are frequently used as a model in early product development. Generating appropriate animal model data can inform physiological-based pharmacokinetic (PBPK) model building that might eventually replace the need for extensive, expensive preclinical and clinical testing. Little detail was found in the existing literature on sampling and bioanalytical protocols for determining drug concentration in different compartments of fresh eye tissues. This study describes in detail a sampling protocol for evaluating dexamethasone concentration in different tissues of freshly harvested eyes using TobraDex ST topical ophthalmic drug product in a rabbit model.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.vascn.2018.12.002 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!