Novel multifunctional nanocomposite for root caries restorations to inhibit periodontitis-related pathogens.

J Dent

Department of Advanced Oral Sciences and Therapeutics, University of Maryland School of Dentistry, Baltimore, MD, 21201, USA; Center for Stem Cell Biology & Regenerative Medicine, University of Maryland School of Medicine, Baltimore, MD, 21201, USA; Marlene and Stewart Greenebaum Cancer Center, University of Maryland School of Medicine, Baltimore, MD, 21201, USA. Electronic address:

Published: February 2019

Objectives: The objectives of this study were to: (1) develop a novel multifunctional composite with nanoparticles of silver (NAg), 2-methacryloyloxyethyl phosphorylcholine (MPC), dimethylaminohexadecyl methacrylate (DMAHDM) and nanoparticles of amorphous calcium phosphate (NACP); and (2) investigate biofilm-inhibition via the multifunctional nanocomposite against three species of periodontal pathogens for the first time.

Methods: The multifunctional nanocomposite was fabricated by incorporating NAg, MPC, DMAHDM and NACP into the resin consisting of pyromellitic glycerol dimethacrylate (PMDGDM) and ethoxylated bisphenol A dimethacrylate (EBPADMA). Three species (Porphyromonas gingivalis, Aggregatibacter actinomycetemcomitans and Fusobacterium nucleatum) were tested for metabolic activity (MTT), live/dead staining, polysaccharide production and colony-forming units (CFU) of biofilms grown on resins.

Results: Incorporation of 0.08% to 0.12% NAg, 3% MPC, 3% DMAHDM and 30% NACP did not compromise the mechanical properties of the composite (p > 0.1). The multifunctional nanocomposite reduced protein adsorption to nearly 1/10 of that of a commercial control (p < 0.05). For all three species, the biofilm CFU was reduced by about 5 and 1 orders of magnitude via the nanocomposite containing NAg + MPC + DMAHDM, compared to commercial control and the composite with MPC + DMAHDM, respectively.

Conclusions: The novel multifunctional nanocomposite achieved the greatest reduction in metabolic activity, polysaccharide and biofilm growth of three periodontal pathogens.

Clinical Significance: The strongly-antibacterial, multifunctional composite is promising for treating root lesions, alleviating periodontitis and protecting the periodontal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.jdent.2018.12.001DOI Listing

Publication Analysis

Top Keywords

multifunctional nanocomposite
16
novel multifunctional
8
three species
8
nag mpc
8
mpc dmahdm
8
nanocomposite
4
nanocomposite root
4
root caries
4
caries restorations
4
restorations inhibit
4

Similar Publications

Despite the advances in the development of therapeutic wearable wound-healing patches, lack self-healing properties and strong adhesion to diabetic skin, hindering their effectiveness. We propose a unique, wearable patch made from a 3D organo-hydrogel nanocomposite containing polydopamine, titanium dioxide nanoparticles, and silver quantum dots (PDA-TiO@Ag). The designed patch exhibits ultra-stretchable, exceptional-self-healing, self-adhesive, ensuring conformal contact with the skin even during movement.

View Article and Find Full Text PDF

Editorial for Special Issue: "Thin Films Based on Nanocomposites (2nd Edition)".

Nanomaterials (Basel)

December 2024

National Institute of Materials Physics, 405A Atomistilor Street, P.O. Box MG-7, 077125 Magurele, Romania.

The continuous demand for multifunctional materials in industrial applications has driven the design of nanocomposites with new or enhanced properties [...

View Article and Find Full Text PDF

The rapid progress in nanotechnology has introduced multifunctional iron oxide nanoparticles as promising agents in cancer treatment. This research focused on the synthesis and assessment of citric-acid-coated, folic-acid-conjugated nanoparticles loaded with doxorubicin, evaluating their therapeutic potential in tumor models. An advanced automated continuous technology line (CTL) utilizing a controlled co-precipitation method was employed to produce highly dispersive, multifunctional nanofluids with a narrow size distribution.

View Article and Find Full Text PDF

Injectable dual-network hyaluronic acid nanocomposite hydrogel for prevention of postoperative breast cancer recurrence and wound healing.

Int J Biol Macromol

December 2024

State Key Laboratory for Chemistry and Molecular Engineering of Medicinal Resources, School of Chemistry and Pharmaceutical Science, Guangxi Normal University, Guilin 541001, PR China.

High locoregional recurrence rates and potential wound infections remain a significant challenge for postoperative breast cancer patients. Herein, we developed a dual-network hyaluronic acid (HA) nanocomposite hydrogel composed of herring sperm DNA (hsDNA) bridged methacrylated HA (HAMA) and FeMg-LDH-ppsa nanohybrid chelated catechol-modified HA (HADA) for the prevention of breast cancer recurrent, anti-infection, and promoting wound healing. Dynamic reversible hsDNA cross-linking combined with metal-catechol chelating renders the hydrogel injectability, rapid self-healing ability, and enhanced mechanical properties.

View Article and Find Full Text PDF

The advent of bionic skin sensors represents a significant leap forward in the realm of wearable health monitoring technologies. Existing bionic skin technologies face several limitations, including complex and expensive manufacturing processes, low wearing comfort, and challenges in achieving comfortable real-time health monitoring. These shortcomings hinder the widespread adoption and practical utility of bionic skin in various applications.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!