An adsorption resin CX-6 was synthesized and used for acid soluble lignin (ASL) removal from sugarcane bagasse hydrolysate (SCBH). The adsorption conditions of pH value, amount of adsorbent, initial ASL concentration, and temperature on ASL adsorption were discussed. The results showed the adsorption capacity of ASL was negatively affected by increasing temperature, solution pH, and adsorbent dose, and was positively affected by increasing initial concentration. The maximum adsorption capacity of ASL was 135.3 mg/g at initial ASL concentration 6.46 g/L, adsorption temperature 298 K, and pH 1. Thermodynamic study demonstrated that the adsorption process was spontaneous and exothermic. Equilibrium and kinetics experiments were proved to fit the Freundlich isotherm model and pseudo-second-order model well, respectively. Fermentation experiment showed that the SCBH after combined overliming with resin adsorption as fermentation substrate for microbial lipid production by Trichosporon cutaneum and Trichosporon coremiiforme was as better as that of SCBH by combined overliming with active charcoal adsorption, and more efficient than that of SCBH only by overliming. Moreover, the regeneration experiment indicated that the CX-6 resin is easy to regenerate and its recirculated performance is stable. In conclusion, our results provide a promising adsorbent to detoxify lignocellulose hydrolysate for further fermentation.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s12010-018-02939-2DOI Listing

Publication Analysis

Top Keywords

adsorption
10
acid soluble
8
soluble lignin
8
removal sugarcane
8
sugarcane bagasse
8
bagasse hydrolysate
8
lipid production
8
initial asl
8
asl concentration
8
adsorption capacity
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!