AI Article Synopsis

  • Prior studies indicated that blood flow patterns around drug-eluting stents can improve drug delivery, but they typically used constant flow conditions.
  • This new research incorporates time-varying drug depletion and validates simulations with laboratory experiments, revealing minimal impact from blood properties on drug uptake.
  • The findings suggest that steady-state models are inadequate for studying drug transport in stented arteries, offering insights for better stent design.

Article Abstract

Prior numerical studies have shown that the blood flow patterns surrounding drug-eluting stents can enhance drug uptake in stented arteries. However, these studies employed steady-state simulations, wherein flow and drug transport parameters remained constant with respect to time. In the present study, numerical simulations and in-vitro experiments were performed to determine whether luminal blood flow patterns can truly enhance drug uptake in stented arteries. Unlike the aforementioned studies, the time-varying depletion of drug within the stent coating was modelled and the simulation results were validated qualitatively with the in-vitro experiments. The simulations showed that the non-Newtonian properties of blood, its complex near-wall behavior, and the pulsatility of its flow all affect drug uptake only modestly. Furthermore, flow-mediated drug transport was found to be negligible due to the rapid rate at which drug depletes at the stent coating surfaces that are exposed to arterial blood flow. For fluid dynamicists, these results show that steady-state simulations must be avoided when modelling drug transport in stented arteries. For device designers, these results may be used to optimize the shape of drug-eluting stent struts and coatings to improve stent efficacy.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s10439-018-02176-yDOI Listing

Publication Analysis

Top Keywords

drug transport
16
blood flow
12
drug uptake
12
stented arteries
12
flow-mediated drug
8
drug-eluting stents
8
flow patterns
8
drug
8
enhance drug
8
uptake stented
8

Similar Publications

Efflux pumps that transport antibacterial drugs out of bacterial cells have broad specificity, commonly leading to broad spectrum resistance and limiting treatment strategies for infections. It remains unclear how efflux pumps can maintain this broad spectrum specificity to diverse drug molecules while limiting the efflux of other cytoplasmic content. We have investigated the origins of this broad specificity using theoretical models informed by the experimentally determined structural and kinetic properties of efflux pumps.

View Article and Find Full Text PDF

Background: Therapeutic drug monitoring is important for optimizing anti-tumor necrosis factor-α (TNF-α) therapy in inflammatory bowel disease. However, the exposure-response relationship has never been assessed in pouchitis.

Aims: To explore associations between anti-TNF-α drug concentration and pouchitis disease activity in patients with a background of ulcerative colitis.

View Article and Find Full Text PDF

Virus budding is a critical step in the replication cycle of enveloped viruses, closely linked to viral spread, disease progression, and clinical outcomes. The budding of many enveloped RNA viruses is facilitated by the hijacking of the host endosomal sorting complex required for transport (ESCRT) proteins through viral late domains. These late domains are essential for progeny virus production and are highly conserved, making the interaction between late domains and host ESCRT proteins a potential target for the development of antiviral therapeutics.

View Article and Find Full Text PDF

Cyanobacteria are important model organisms for studying the process of photosynthesis and the effects of environmental stress factors. This study aimed to identify the inhibitory sites of NaCl in the whole photosynthetic electron transport in Synechocystis sp. PCC 6803 WT cells by using multiple biophysical tools.

View Article and Find Full Text PDF

Peptides play critical roles in cellular functions such as signaling and immune regulation, and peptide-based biotherapeutics show great promise for treating various diseases. Among these, cell-penetrating peptides (CPPs) are particularly valuable for drug delivery due to their ability to cross cell membranes. However, the mechanisms underlying CPP-mediated transport, especially across the blood-brain barrier (BBB), remain poorly understood.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!