Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Structural properties of cohesive powders are dominated by their microstructural composition. Powders with a fractal microstructure show particularly interesting properties during compaction where a microstructural transition and a fractal breakdown happen before compaction and force transport. The study of this phenomenon has been challenging due to its long-range effect and the subsequent necessity to characterize these microstructural changes on a macroscopic scale. For the detailed investigation of the complex nature of powder compaction for various densification states along with the heterogeneous breakdown of the fractal microstructure we applied neutron dark-field imaging in combination with a variety of supporting techniques with various spatial resolutions, field-of-views and information depths. We used scanning electron microscopy to image the surface microstructure in a small field-of-view and X-ray tomography to image density variations in 3D with lower spatial resolution. Non-local spin-echo small-angle neutron scattering results are used to evaluate fitting models later used as input parameters for the neutron dark-field imaging data analysis. Finally, neutron dark-field imaging results in combination with supporting measurements using scanning electron microscopy, X-ray tomography and spin-echo small angle scattering allowed us to comprehensively study the heterogeneous transition from a fractal to a homogeneous microstructure of a cohesive powder in a quantitative manner.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294745 | PMC |
http://dx.doi.org/10.1038/s41598-018-35845-y | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!