Supersaturated Silica-Lipid Hybrid Oral Drug Delivery Systems: Balancing Drug Loading and In Vivo Performance.

J Pharmacol Exp Ther

University of South Australia, School of Pharmacy and Medical Science, Adelaide, South Australia, Australia; ARC Centre of Excellence in Convergent Bio-Nano Science and Technology, University of South Australia, Mawson Lakes Campus, Mawson Lakes, South Australia, Australia (H.B.S., K.F.P., N.T., C.A.P.); and University of Oulu, Research Unit of Biomedicine, Oulu University, Oulu, Finland (M.K.)

Published: September 2019

Supersaturated silica-lipid hybrid (super-SLH) drug carriers are a recent strategy to improve the drug loading of oral solid lipid based formulations, however they are yet to be studied in vivo. This study investigated the in vivo pharmacokinetics (PK) of super-SLH containing ibuprofen (IBU), as a model Biopharmaceutics Classification Scheme (BCS) class II drug, analyzing the influence of supersaturated drug loading on oral bioavailability and assessing in vitro-in vivo correlation (IVIVC). In addition, super-SLH was directly compared with spray-dried SLH and Nurofen to explore its potential advantages over the well-established and commercial formulations. Fasted male Sprague-Dawley rats were administered formulation suspensions (10 mg/kg IBU) via oral gavage, and blood samples were acquired and plasma was analyzed for IBU concentrations over 24 hours. In vivo, super-SLH with drug loads of 9.5 (99.5% saturated) and 19.3% w/w (227% saturated) achieved bioavailabilities equal to spray-dried SLH and 2.2-fold greater than Nurofen. This effect diminished for super-SLH with a drug load of 29.1% w/w (389% saturated), which exhibited a bioavailability of less than Nurofen due to its greater extent of supersaturation and larger content of crystalline IBU. The super-SLH containing 19.3% w/w IBU provided the greatest PK performance, achieving the same degree of bioavailability enhancement as spray-dried SLH and requiring 63% less formulation. A significant positive IVIVC was observed between the performances of the formulations. These findings indicate the potential of super-SLH as an improved oral solid lipid based formulation strategy for enhancing oral bioavailability of other BCS class II drugs.

Download full-text PDF

Source
http://dx.doi.org/10.1124/jpet.118.254466DOI Listing

Publication Analysis

Top Keywords

drug loading
12
super-slh drug
12
spray-dried slh
12
supersaturated silica-lipid
8
silica-lipid hybrid
8
drug
8
loading oral
8
oral solid
8
solid lipid
8
lipid based
8

Similar Publications

Roadmap to discovery and early development of an mRNA loaded LNP formulation for liver therapeutic genome editing.

Expert Opin Drug Deliv

January 2025

Advanced Drug Delivery, Pharmaceutical Sciences, R&D, AstraZeneca, Macclesfield, UK.

Introduction: mRNA therapeutics were a niche area in drug development before COVIDvaccines. Now they are used in vaccine development, for non-viral therapeuticgenome editing, chimericantigen receptor T  (CAR T) celltherapies and protein replacement.  mRNAis large, charged, and easily degraded by nucleases.

View Article and Find Full Text PDF

Nebulized Hybrid Nanoarchaeosomes: Anti-Inflammatory Activity, Anti-Microbial Activity and Cytotoxicity on A549 Cells.

Int J Mol Sci

January 2025

Centro de Investigación y Desarrollo de Nanomedicinas (CIDeN), Departamento de Ciencia y Tecnología, Universidad Nacional de Quilmes, Roque Sáenz Peña 352, B1876 Bernal, Argentina.

The properties of two hybrid nanoarchaeosomes (hybrid nanoARCs) made of archaeolipids extracted from the halophilic archaea and combining the properties of archaeolipid bilayers with metallic nanoparticles are explored here. BS-nanoARC, consisting of a nanoARC loaded with yerba mate ( extract (YME)-biogenic silver nanoparticles (BSs), and [BS + BS-nanoARC], consistent of a BS-nanoARC core covered by an outer shell of BSs, were structurally characterized and their therapeutic activities screened. By employing 109 ± 5 µg gallic acid equivalents (GAEs) and 73.

View Article and Find Full Text PDF

Ultrasonic Microfluidic Method Used for siHSP47 Loaded in Human Embryonic Kidney Cell-Derived Exosomes for Inhibiting TGF-β1 Induced Fibroblast Differentiation and Migration.

Int J Mol Sci

January 2025

School of Pharmacy, Key Laboratory of Molecular Pharmacology and Drug Evaluation, Ministry of Education, Collaborative Innovation Center of Advanced Drug Delivery System and Biotech Drugs in Universities of Shandong, Yantai University, Yantai 264005, China.

Idiopathic pulmonary fibrosis (IPF) is a chronic, progressive, and devastating lung disorder. In response to transforming growth factor-β (TGF-β), normal lung cells proliferate and differentiate into myofibroblasts, which are instrumental in promoting disease progression. Small interfering RNA (siRNA) targeting heat shock protein 47 (HSP47) has been demonstrated to alleviate IPF by blocking collagen synthesis and secretion.

View Article and Find Full Text PDF

Design and Characterization of Novel Polymeric Hydrogels with Protein Carriers for Biomedical Use.

Int J Mol Sci

December 2024

Department of Materials Engineering, Faculty of Materials Engineering and Physics, Cracow University of Technology, 37 Jana Pawla II Av., 31-864 Krakow, Poland.

Hydrogels are three-dimensional polymeric matrices capable of absorbing significant amounts of water or biological fluids, making them promising candidates for biomedical applications such as drug delivery and wound healing. In this study, novel hydrogels were synthesized using a photopolymerization method and modified with cisplatin-loaded protein carriers, as well as natural extracts of nettle () and chamomile ( L.).

View Article and Find Full Text PDF

Due to the high mortality rate of ovarian cancer, there is a need to find novel strategies to improve current treatment modalities. Natural compounds offer great potential in this field but also require the careful design of systems for their delivery to cancer cells. Our study explored the anticancer effects of novel resveratrol (RSV)- and curcumin (CUR)-loaded core-shell nanoparticles in human ovarian cancer cells.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!