The identification and characterization of viruses of the genus in healthy and infected livestock, including cattle and goats, have been increasing. (EV-E) and (EV-F) are commonly found in cattle, whereas (EV-G) is found in goats. In this study, molecular and phylogenetic analyses were performed to determine the prevalence of EVs in cattle and goat feces from Kanchanaburi Province, Thailand. The presence of EVs in water samples and the feces of other animals collected from the areas surrounding cattle and goat farms was also investigated. By use of 5'-untranslated region (5' UTR) real-time reverse transcription-PCR (RT-PCR), EVs were detected in 39.5% of cattle samples, 47% of goat samples, 35.3% of water samples, and one pool of chicken feces. Phylogenetic analysis revealed the presence of EV-E and EV-F in cattle, EV-E and EV-G in goats, and EV-F in water samples and chicken feces. Analysis of enteroviral VP1 sequences from cattle revealed that the EV-E genotypes circulating in the study region were EV-E1, with a possible new genotype that is closely related to EV-E2. Analysis of enteroviral VP1 sequences from goats suggested the circulation of EV-G5 and a possible new genotype that is closely related to EV-G20. Sequence analyses also suggested that although the VP1 sequences from goats were closely related to those of EV-G, which were considered porcine enterovirus sequences, their 5' UTRs form a separated cluster with sequences of sheep and goat origin, suggesting a new classification of the ovine/caprine-specific enterovirus group. Possible new EV-E and EV-G genotypes were identified for EVs detected in this study. The EV-E viruses were also successfully isolated from MDBK cells. The goat EV sequence analysis suggested the presence of an ovine/caprine-specific EV group that is different from EV-G of porcine origin. The significance of our research is that it identifies and characterizes possible novel EVs, thereby indicating that enteroviruses in animals are continually evolving. The facts that enteroviruses can persist in the environment, contaminate it for long periods, and be transmitted between animals raise serious concerns regarding this group of viruses as emerging livestock pathogens.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6384098 | PMC |
http://dx.doi.org/10.1128/AEM.02420-18 | DOI Listing |
Emerg Microbes Infect
January 2025
The Pirbright Institute, Pirbright, Woking, United Kingdom.
Clade 2.3.4.
View Article and Find Full Text PDFMed Vet Entomol
January 2025
Department of Environmental and Radiological Health Sciences, Colorado State University, Fort Collins, Colorado, USA.
Culicoides biting midges adversely impact animal health through transmission of multiple orbiviruses, such as bluetongue virus (BTV). This study used light trapping data collected in the Southeastern United States for three Culicoides midge species that are confirmed or suspected BTV vectors: Culicoides insignis, Culicoides stellifer and Culicoides venustus. Midge presence datasets were combined with meteorological data and ecological data to model habitat suitability for each species.
View Article and Find Full Text PDFVet Res Commun
January 2025
ARGO, ICAR- National Dairy Research Institute, Deemed University, Karnal, India.
Sperm motility is the prime functional attribute for semen quality and fertility of the bull. However, the bull's age directly affects the semen quality, and the bull's fertility and productive life decline with age. Even though research on age has been conducted in the past, it is still unclear how old a bull should be maintained at artificial insemination centers.
View Article and Find Full Text PDFVet Microbiol
January 2025
Département de pathologie et microbiologie, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada; Research Chair in Biosecurity of Dairy Production, Faculté de médecine vétérinaire, Université de Montréal, Saint-Hyacinthe, Québec, Canada.
Paratuberculosis, a chronic wasting disease affecting domestic and wild ruminants worldwide, is caused by Mycobacterium avium subsp. paratuberculosis (MAP). Various diagnostic tests exist for detecting MAP infection; however, none of them possess perfect accuracy to be qualified as a reference standard test, particularly due to their notably low sensitivity.
View Article and Find Full Text PDFCurr Microbiol
January 2025
Agricultural Research, Education and Extension Organization (AREEO), Razi Vaccine and Serum Research Institute (RVSRI), Karaj, Iran.
Brucellosis, a zoonotic disease caused by Brucella spp. globally, is of great significance not only to livestock but also to public health. The most significant of the twelve species is Brucella melitensis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!