A nurse-driven method for developing artificial intelligence in "smart" homes for aging-in-place.

Nurs Outlook

School of Nursing & Midwifery, Edith Cowan University, Joondalup Campus, Perth, Australia.

Published: June 2019

Objectives: To offer practical guidance to nurse investigators interested in multidisciplinary research that includes assisting in the development of artificial intelligence (AI) algorithms for "smart" health management and aging-in-place.

Methods: Ten health-assistive Smart Homes were deployed to chronically ill older adults from 2015 to 2018. Data were collected using five sensor types (infrared motion, contact, light, temperature, and humidity). Nurses used telehealth and home visitation to collect health data and provide ground truth annotation for training intelligent algorithms using raw sensor data containing health events.

Findings: Nurses assisting with the development of health-assistive AI may encounter unique challenges and opportunities. We recommend: (a) using a practical and consistent method for collecting field data, (b) using nurse-driven measures for data analytics, (c) multidisciplinary communication occur on an engineering-preferred platform.

Conclusions: Practical frameworks to guide nurse investigators integrating clinical data with sensor data for training machine learning algorithms may build capacity for nurses to make significant contributions to developing AI for health-assistive Smart Homes.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6450732PMC
http://dx.doi.org/10.1016/j.outlook.2018.11.004DOI Listing

Publication Analysis

Top Keywords

artificial intelligence
8
nurse investigators
8
assisting development
8
health-assistive smart
8
smart homes
8
sensor data
8
data
7
nurse-driven method
4
method developing
4
developing artificial
4

Similar Publications

Background: The pathogenesis of non-alcoholic fatty liver disease (NAFLD) with a global prevalence of 30% is multifactorial and the involvement of gut bacteria has been recently proposed. However, finding robust bacterial signatures of NAFLD has been a great challenge, mainly due to its co-occurrence with other metabolic diseases.

Results: Here, we collected public metagenomic data and integrated the taxonomy profiles with in silico generated community metabolic outputs, and detailed clinical data, of 1206 Chinese subjects w/wo metabolic diseases, including NAFLD (obese and lean), obesity, T2D, hypertension, and atherosclerosis.

View Article and Find Full Text PDF

Machine learning and multi-omics in precision medicine for ME/CFS.

J Transl Med

January 2025

Department of Biochemistry and Pharmacology, Bio21 Molecular Science and Biotechnology Institute, University of Melbourne, Parkville, VIC, 3052, Australia.

Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a complex and multifaceted disorder that defies simplistic characterisation. Traditional approaches to diagnosing and treating ME/CFS have often fallen short due to the condition's heterogeneity and the lack of validated biomarkers. The growing field of precision medicine offers a promising approach which focuses on the genetic and molecular underpinnings of individual patients.

View Article and Find Full Text PDF

Background: Senescence classification is an acknowledged challenge within the field, as markers are cell-type and context dependent. Currently, multiple morphological and immunofluorescence markers are required. However, emerging scRNA-seq datasets have enabled an increased understanding of senescent cell heterogeneity.

View Article and Find Full Text PDF

Diagnosis of Parkinson's disease by eliciting trait-specific eye movements in multi-visual tasks.

J Transl Med

January 2025

School of Information and Communication Engineering, Dalian University of Technology, No. 2 Linggong Road, 116024, Dalian, China.

Background: Parkinson's Disease (PD) is a neurodegenerative disorder, and eye movement abnormalities are a significant symptom of its diagnosis. In this paper, we developed a multi-task driven by eye movement in a virtual reality (VR) environment to elicit PD-specific eye movement abnormalities. The abnormal features were subsequently modeled by using the proposed deep learning algorithm to achieve an auxiliary diagnosis of PD.

View Article and Find Full Text PDF

Background: Alopecia areata (AA) is a common non-scarring hair loss disorder associated with autoimmune conditions. However, the pathobiology of AA is not well understood, and there is no targeted therapy available for AA.  METHODS: In this study, differential gene expression analysis, immune status assessment, weighted correlation network analysis (WGCNA), and functional enrichment analysis were performed to identify shared genes associated with both immunological response and AA.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!