The compound 5'-deoxy-5-fluorouridine (5'-DFUR) is a prodrug of the anti-tumor drug 5-fluorouracil (5-FU). Thymidine phosphorylase (TP) is an enzyme that can convert 5'-DFUR to its active form 5-FU and the expression of TP is upregulated in various cancer cells. In this study, 5'-DFUR associated with amphiphilic copolymer poly(ε-caprolactone)-methoxy poly(ethylene glycol) (5'-DFUR-PCL-MPEG) was synthesized, characterized, and self-assembled into functional polymeric micelles. To demonstrate that the prodrug 5'-DFUR could convert into cytotoxic 5-fluorouracil (5-FU) by endogenous TP, HT-29 colorectal cancer cells were treated with 5'-DFUR-PCL-MPEG polymeric micelles for various time periods. Chemotherapeutic drugs doxorubicin (DOX) and 7-ethyl-10-hydroxycamptothecin (SN-38) were also encapsulated separately into 5'-DFUR-PCL-MPEG polymeric micelles to create a dual drug-loaded system. HT-29 cells were treated with DOX or SN-38 encapsulated 5'-DFUR-PCL-MPEG polymeric micelles to examine the efficacy of dual drug-loaded micelles. As a result, HT-29 cells treated with 5'-DFUR-PCL-MPEG polymeric micelles showed up to 40% cell death rate after a 72-h treatment. In contrast, HT-29 cells challenged with DOX or SN-38 encapsulated 5'-DFUR-incorporated polymeric micelles showed 36% and 31% in cell viability after a 72-h treatment, respectively.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6315712 | PMC |
http://dx.doi.org/10.3390/nano8121041 | DOI Listing |
Drug Discov Today
December 2024
Barry and Judy Silverman College of Pharmacy, Nova Southeastern University, 3200 South University Drive, Ft. Lauderdale, FL 33328-2018, USA. Electronic address:
Magnetic polymeric nanocomposites are a modern class of materials in which magnetic nanoparticles are embedded in a polymeric matrix. This combination of magnetic responsiveness and tuneable properties bestows versatility on this class of polymer nanocomposite material, which has potentially broad applications in drug delivery, imaging, environmental remediation and beyond. This review covers the uses of magnetic polymeric nanocomposites in drug delivery, discussing magnetic micelles, magnetic liposomes, magnetic hydrogels, magnetic sponges, magnetic mesoporous silica nanoparticles, magnetic microrobots, magnetic elastomers and magnetic scaffolds.
View Article and Find Full Text PDFOncol Res
December 2024
Department of Biology, College of Science, Sultan Qaboos University, Muscat, 123, Oman.
Nanotechnology in cancer therapy has significantly advanced treatment precision, effectiveness, and safety, improving patient outcomes and personalized care. Engineered smart nanoparticles and cell-based therapies are designed to target tumor cells, precisely sensing the tumor microenvironment (TME) and sparing normal cells. These nanoparticles enhance drug accumulation in tumors by solubilizing insoluble compounds or preventing their degradation, and they can also overcome therapy resistance and deliver multiple drugs simultaneously.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
December 2024
Tongji University, School of Material Science and Engineering, CHINA.
A classical crystallization usually grows epitaxially from a crystal nucleus. Presented in this study is an unusual endotaxy growth manner of a crystalline homopolymer to form hexagonal nanosheets. The amphiphilic homopolymer, poly(3-(4-(phenyldiazenyl)phenoxy)propyl methacrylate) (PAzoPMA), is first annealed in isopropanol to afford a hexagonal nut-like structure.
View Article and Find Full Text PDFJ Control Release
December 2024
Department of Global Innovative Drugs, The Graduate School of Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea; College of Pharmacy, Chung-Ang University, 221 Heukseok-dong, Dongjak-gu, Seoul 06974, Republic of Korea. Electronic address:
Glioblastoma multiforme (GBM) is a devastating primary tumor of the central nervous system with a significantly poor prognosis. The primary challenge in treating GBM lies in the restrictive nature of the blood-brain barrier (BBB), impeding effective drug delivery to the brain. In this study, intranasal polymeric micelles encapsulating a quercetin-etoposide combination were developed to induce synergistic apoptotic effects and enhance direct drug delivery to the brain.
View Article and Find Full Text PDFFront Oncol
December 2024
College of Traditional Chinese Medicine, Shandong University of Traditional Chinese Medicine, Jinan, Shandong, China.
Glabridin, a flavonoid derived from the plant , has garnered significant attention due to its diverse pharmacological effects, including antioxidant, antibacterial, anti-inflammatory, hypolipidemic, and hypoglycemic activities. Studies have shown that glabridin exhibits substantial antitumor activity by modulating the proliferation, apoptosis, metastasis, and invasion of cancer cells through the targeting of various signaling pathways, thus indicating its potential as a therapeutic agent for malignant tumors. To enhance its solubility, stability, and bioavailability, several drug delivery systems have been developed, including liposomes, cyclodextrin inclusion complexes, nanoparticles, and polymeric micelles.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!