The preparation of the ordered pores colloidal crystal scaffold and its role in promoting growth of lung cells.

Colloids Surf B Biointerfaces

School of Life Science, South China Normal University, Guangzhou 510631, China; Institute for Advanced Materials and Guangdong Provincial Key Laboratory of Quantum Engineering and Quantum Materials South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou 510006, China. Electronic address:

Published: January 2019

Lung is one of important organs and lung diseases seriously affect the health of human beings. In this study, chitosan and gelatin as natural biological macromolecules raw material for the synthesis of ordered colloidal crystal scaffolds (CCS), FeO magnetic nanoparticles (MNPs) were used as pore-making for the first time. The pore-making agent were added into the hydrogels to synthesis the ordered (magnetic field) and disordered (no magnetic field) CCS. Collagen and basic fibroblast growth factor (bFGF) modified on the surface of CCS. Then mouse lung epithelial cells (TC-1) and normal human bronchial epithelial cells (Beas-2B) were cultured on the scaffold, obviously induced cell proliferation. Various physical and chemical characteristics indicate that the preparation of scaffolds and modified growth factors can greatly promote the proliferation of these two cells. In addition, the scafolld was implanted into the SD rat in vivo, and routine blood tests showed that the stent had a small inflammatory response to the rat. This may be one of the effective strategies for the future treatment of lung injury repair.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.colsurfb.2018.10.055DOI Listing

Publication Analysis

Top Keywords

colloidal crystal
8
synthesis ordered
8
magnetic field
8
epithelial cells
8
lung
5
preparation ordered
4
ordered pores
4
pores colloidal
4
crystal scaffold
4
scaffold role
4

Similar Publications

Activity waves in condensed excitable phases of Quincke rollers.

Soft Matter

January 2025

Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, P. R. China.

Traveling waves are universal in excitable systems; yet, the microscopic dynamics of wave propagation is inaccessible in conventional excitable systems. Here, we show that active colloids of Quincke rollers driven by a periodic electric field can form condensed excitable phases. Distinct from existing excitable media, condensed excitable colloids can be tuned reversibly between active liquids and active crystals in which two distinct waves can be excited, respectively.

View Article and Find Full Text PDF

Engineering vanadium vacancies to accelerate ion kinetics for high performance zinc ion battery.

J Colloid Interface Sci

January 2025

State Key Laboratory of Inorganic Synthesis and Preparative Chemistry, College of Chemistry, Jilin University, Changchun 130012, PR China. Electronic address:

Vanadium dioxide (VO) has attracted significant attention in aqueous zinc ion batteries (AZIBs) owing to their desirable theoretical specific capacity originated from multiple electrons transfer reaction and special crystal structure. However, sluggish electrochemical kinetics leads to inferior electrochemical storage performance. Herein, rich vanadium vacancies were introduced in tunnel VO to boost Zn diffusion, increasing charge storage capacity and lengthen lifespan.

View Article and Find Full Text PDF

Interfacial oxygen bridges engineering between NbO and graphene towards advanced sodium ion capacitors.

J Colloid Interface Sci

January 2025

School of Materials Science and Engineering, Hefei University of Technology, Hefei 230009 China; Key Laboratory of Advanced Functional Materials and Devices of Anhui Province, Hefei University of Technology, Hefei 230009 China; China International S&T Cooperation Base for Advanced Energy and Environmental Materials & Anhui Provincial International S&T Cooperation Base for Advanced Energy Materials, Hefei University of Technology, Hefei 230009, China. Electronic address:

NbO has become a focus of research for its suitability as an anode material in sodium ion capacitors (SICs), due to its open ionic channels. The integration of NbO with reduced graphene oxide (rGO) is known to boost its electrical conductivity. However, the sluggish interfacial charge transfer kinetics and interface collapse of NbO/rGO pose challenges to its rate capability and durability.

View Article and Find Full Text PDF

A Wenzel Interfaces Design for Homogeneous Solute Distribution Obtains Efficient and Stable Perovskite Solar Cells.

Adv Mater

January 2025

College of Chemistry and Chemical Engineering/Film Energy Chemistry for Jiangxi Provincial Key Laboratory (FEC), Nanchang University, 999 Xuefu Avenue, Nanchang, 330031, China.

The coffee-ring effect, caused by uneven deposition of colloidal particles in perovskite precursor solutions, leads to poor uniformity in perovskite films prepared through large-area printing. In this work, the surface of SnO is roughened to construct a Wenzel model, successfully achieving a super-hydrophilic interface. This modification significantly accelerates the spreading of the perovskite precursor solution, reducing the response delay time of perovskite colloidal particles during the printing process.

View Article and Find Full Text PDF

Multifunctional Organic Molecule for Defect Passivation of Perovskite for High-Performance Indoor Solar Cells.

Materials (Basel)

January 2025

Key Laboratory of Applied Surface and Colloid Chemistry, National Ministry of Education, Shaanxi Key Laboratory for Advanced Energy Devices, Shaanxi Engineering Laboratory for Advanced Energy Technology, School of Materials Science and Engineering, Shaanxi Normal University, Xi'an 710119, China.

Perovskite solar cells (PSCs) can utilize the residual photons from indoor light and continuously supplement the energy supply for low-power electron devices, thereby showing the great potential for sustainable energy ecosystems. However, the solution-processed perovskites suffer from serious defect stacking within crystal lattices, compromising the low-light efficiency and operational stability. In this study, we designed a multifunctional organometallic salt named sodium sulfanilate (4-ABS), containing both electron-donating amine and sulfonic acid groups to effectively passivate the positively-charged defects, like under-coordinated Pb ions and iodine vacancies.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!