Objective: Implant-related infection is a devastating complication in orthopedic surgery. Aiming to minimize this problem, many material modifications have been developed. Here we report a study of a surface modification of Ti-6 Al-4 V alloy using a methodology that enables the study of interactions between bacteria and the material in the presence of eukaryotic cells.
Methods: We mixed different concentrations of collection or clinical strains of staphylococci isolated from implant-related infections with preosteoblastic cells using a previously published methodology, analyzing the minimal concentration of bacteria able to colonize the surface of the material through image analysis. Ti-6 Al-4 V alloy was modified by anodization to obtain two F-doped nanostructured surfaces that have been previously described to have antibacterial properties.
Results: Our results show similar bacterial adhesion results to nanoporous and nanotubular F-doped surfaces. The presence of preosteoblastic cells increases the adherence of all bacterial strains to both structures. No effect of the surface on eukaryotic cells adherence was detected.
Conclusion: To our knowledge, this is the first time that anin vitro study emulating the race for the surface evaluates and compares the osseointegration and antibacterial properties between two nanostructured- modified titanium alloy surfaces. Clinical strains show different behavior from collection ones in bacterial adherence. The presence of cells increased bacterial adherence. NP and NT surface modifications didn´t show significant differences in bacterial adhesion and preosteoblastic cells integration.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.colsurfb.2018.10.076 | DOI Listing |
Front Chem
December 2024
Department of Orthopaedics, The Second Affiliated Hospital of Nanchang University, Nanchang, Jiangxi, China.
Introduction: Two-dimensional (2D) MXene, recognized for its outstanding physical and chemical properties,has gained attention as a promising material in the biomedical field. However, its potential in tissue engineering applications remains underexplored. This study focuses on synthesizing SF-MXene composite electrospun fibers and evaluating their suitability for biomedical applications.
View Article and Find Full Text PDFAdv Healthc Mater
January 2025
School of Biomedical Engineering, The University of Western Ontario, London, ON, N6A 5B9, Canada.
Prevalence of osteoarthritis has been increasing in aging populations, which has necessitated the use of advanced biomedical treatments. These involve grafts or delivering drug molecules entrapped in scaffolds. However, such treatments often show suboptimal therapeutic effects due to poor half-life and off-target effects of drug molecules.
View Article and Find Full Text PDFBiomater Adv
December 2024
Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Instituto de Investigación Sanitaria Hospital 12 de Octubre i+12, Plaza Ramón y Cajal s/n, 28040 Madrid, Spain; CIBER de Bioingeniería, Biomateriales y Nanomedicina, Instituto de Salud Carlos III, 28040 Madrid, Spain. Electronic address:
Local delivery of therapeutic ions from bioactive mesoporous glasses (MBGs) is postulated as one of the most promising strategies for regenerative therapy of critical bone defects. Among these ions, Sr cation has been widely considered for this purpose as part of the composition of MBGs. MBGs of chemical composition 75SiO-25-x CaO-5PO-xSrO with x = 0, 2.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Biomedical Engineering, Graduate School of Medicine, Science and Technology, Shinshu University, Nagano, 390-8621, Japan.
Lysophosphatidylethanolamine (LPE) is a bioactive lipid mediator involved in diverse cellular functions. In this study, we investigated the effects of three LPE species, 1-palmitoyl LPE (16:0 LPE), 1-stearoyl LPE (18:0 LPE), and 1-oleoyl LPE (18:1 LPE) on pre-osteoblast MC3T3-E1 cells. All LPE species stimulated cell proliferation and activated the mitogen-activated protein kinase (MAPK)/extracellular signal-regulated kinase (ERK) 1/2.
View Article and Find Full Text PDFJ Clin Invest
January 2025
Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, Texas, USA.
ATP-dependent chromatin remodeling protein ATRX is an essential regulator involved in maintenance of DNA structure and chromatin state and regulation of gene expression during development. ATRX was originally identified as the monogenic cause of X-linked α-thalassemia mental retardation (ATR-X) syndrome. Affected individuals display a variety of developmental abnormalities and skeletal deformities.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!