Flame retardants have been associated with endocrine disorders, thyroid disruption, reproductive toxicity, and immunological interference. Through dismantling and recycling electronics and electric products, flame retardants can be released into the air and settle on work surfaces which may lead to dermal exposure. Hand wipe sampling is commonly used to evaluate dermal exposure. This study assesses the removal efficiency of wipes on the hands of recycling employees, and to compare the efficacy of two common surface wipe sampling materials. We used three sequential hand wipes and quantified the percentage of flame retardants that was removed by each hand wipe in the sequence. Two common wipe materials (gauze and twill) were used to compare the ability to remove flame retardants. The wipes were collected from 12 employees at a U.S. electronics recycling facility immediately at the end of their shift, prior to washing their hands. Results show that although the first wipe removed the highest median percent of the sum of the three wipes for most flame retardants, there was a wide range of the percentages of total individual flame retardants removed by both gauze (4%-98%) or twill hand wipe (1%-89%). Approximately half of the flame retardants a high percentage (>50%) removed by the second and third wipes. This suggests that a single wipe is not sufficient to characterize the extent of dermal contamination. The average of the total amount of flame retardants removed by twill wipes was greater than the average using gauze, but the difference was not statistically significant.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.chemosphere.2018.12.027 | DOI Listing |
Water Res X
May 2025
Key Laboratory of Tropical Marine Bio-resources and Ecology, Guangdong Provincial Key Laboratory of Applied Marine Biology, South China Sea Institute of Oceanology, Chinese Academy of Sciences, Guangzhou 510301, China.
Emerging organophosphate flame retardants (E-OPFRs) are a new class of pollutants that have attracted increasing attention, but their bioaccumulation patterns and trophodynamic behaviors in aquatic food webs still need to be validated by comparison with legacy OPFRs (L-OPFRs). In this study, we simultaneously investigated the bioaccumulation, trophic transfer, and dietary exposure of 8 E-OPFRs and 10 L-OPFRs in a tropical estuarine food web from Hainan Island, China. Notably, the ΣL-OPFRs concentration (16.
View Article and Find Full Text PDFSci Total Environ
January 2025
International Joint Research Centre for Persistent Toxic Substances (IJRC-PTS), College of Environmental Science and Engineering, Dalian Maritime University, Dalian 116026, PR China. Electronic address:
Although the concept of bioaccumulation for novel brominated flame retardants (NBFRs) is clear, the process and interfering factors of bioaccumulation are still not fully understood. The present study comprehensively evaluated the occurrence, transfer and interfering factors of NBFRs in a marine food web to provide new thought and perspective for the bioaccumulation of these compounds. The occurrence of 17 NBFRs were determined from 8 water, 8 sediment and 303 organism samples collected from Dalian Bay, China.
View Article and Find Full Text PDFSci Total Environ
January 2025
State Key Laboratory of Environmental Criteria and Risk Assessment, Chinese Research Academy of Environmental Sciences, Beijing 100012, China. Electronic address:
Tris (1, 3-dichloro-2-propyl) phosphate (TDCPP) is an extensively used organophosphorus flame retardant (OFR). Previous studies have suggested that it has neurotoxic effects, but the neurotoxicity mechanism is still unclear. Neural stem cells are an important in vitro model for studying the neurotoxicity mechanism of pollutants.
View Article and Find Full Text PDFEcotoxicol Environ Saf
January 2025
Key Laboratory of Microbial Technology for Industrial Pollution Control of Zhejiang Province, College of Environment, Zhejiang University of Technology, Hangzhou, Zhejiang 310014, PR China.
Organophosphate flame retardants (OPFRs) are a class of substances that pose potential risks to human health and ecosystems due to their large-scale production, wide range of applications, and ubiquitous presence in the environment. With their potential for long-range atmospheric transport (LRAT), OPFR pollution in high-altitude areas has become an increasing concern. Herein, a general pretreatment method for OPFRs across various sample matrices was established and combined with gas chromatography-mass spectrometry (GC-MS), utilizing a programmed temperature ramp in the vaporization chamber to enable high-throughput detection of OPFRs in various environmental matrices.
View Article and Find Full Text PDFEnviron Pollut
January 2025
Center of Advanced Technology for the Environment (CATE), Graduate School of Agriculture, Ehime University, 3-5-7 Tarumi, Matsuyama 790-8566, Japan; Center for Marine Environmental Studies (CMES), Ehime University, 2-5 Bunkyo-cho, Matsuyama 790-8577, Japan. Electronic address:
The first comprehensive analysis of halogenated organic compounds (HOCs), including 209 full congeners of polychlorinated biphenyls (PCBs), 26 organochlorinated pesticides (OCPs), 41 polybrominated diphenyl ethers (PBDEs), and four other brominated flame retardants (BFRs), was performed on surface mangrove sediments from Bintan Island, Province of the Riau Archipelago, Indonesia. Among the measured HOC contaminants, the mean concentration of ∑PCBs (2.3±0.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!