Copper oxide nanoparticles (CuO NPs) were synthesized biologically using leaf extract of Camilla japonica. The typical UV-visible spectral peak of CuO NPs was observed at a wavelength of ∼290 nm, which confirmed their successful synthesis. From scanning electron microscope (SEM) and transmission electron microscope (TEM) analyses, the synthesized CuO NPs were found to possess spherical shape. Energy dispersive X-ray analyzer (EDX) results revealed that the CuO NPs are almost pure with atomic percentages of 50.92 for Cu and 49.08 for O. Fourier transform infrared (FTIR) confirmed the presence of an absorption peak located at a wavenumber position of ∼480 cm typical for highly pure CuO NPs. TEM images displayed that the particles are relatively uniform in size ∼15-25 nm. The P. aeruginosa and K. pneumonia showed complete resistance against Hexa 077 antibiotic discs. The result of ≤22 ceftazidime and ≤27 cefotaxime confirmed that both the uropathogens were ESBL producers. The ≥8 mm of the MIC stripe further confirmed that both the uropathogens were ESBL producers. Furthermore, the antibacterial activity of CuO NPs against selected ESBL producing P. aeruginosa and K. pneumoniae at minimum inhibition concentration (MIC) of 100 μg/mL. The decreased cell viability and damaged membrane construction of both the uropathogens were observed by confocal laser scanning microscope (CLSM) using AO/EB stains at desired MIC dose. The morphological damage of the bacterial cells was demonstrated by SEM analysis. Hence, based on the above in vitro findings, the results suggested that the CuO NPs are efficient antibacterial compounds against ESBL producing bacteria, and that the plant leaf mediated CuO NPs can be considered as novel and promising material to act against various infectious bacteria.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.micpath.2018.12.017 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!