Detection of size of manufactured sand particles based on digital image processing.

PLoS One

Department of Radiation Oncology, Xiamen Cancer Hospital, First Affiliated Hospital of Xiamen University, Xiamen, Fujian Province, China.

Published: April 2019

AI Article Synopsis

  • The distribution of manufactured sand particle sizes greatly affects concrete quality, leading to the development of a new casting/dispersing system that improves particle measurement over traditional methods.
  • This system utilizes advanced algorithms for image processing to eliminate duplicate particle captures, identify incomplete particles, and accurately determine particle sizes.
  • Experimental results indicate that the new image-based detection method has a maximum repeatability error of 3.46% and, after correction, significantly reduces discrepancies between image-based and traditional sieving results, achieving satisfactory accuracy for practical use.

Article Abstract

The size distribution of manufactured sand particles has a significant influence on the quality of concrete. To overcome the shortcomings of the traditional vibration-sieving method, a manufactured sand casting/dispersing system was developed, based on the characteristics of the sand particle contours (as determined by backlit image acquisition) and an extraction mechanism. Algorithms for eliminating particles from the image that had be repeatedly captured, as well as for identifying incomplete particles at the boundaries of the image, granular contour segmentation, and the determination of an equivalent particle size, are studied. The hardware and software for the image-based detection device were developed. A particle size repeatability experiment was carried out on the single-grade sands, grading the size fractions of the manufactured sand over a range of 0.6-4.75 mm. A method of particle-size correction is proposed to compensate for the difference in the results obtained by the image-based method and those obtained by the sieving method. The experimental results show that the maximum repeatability error of single-grade fractions is 3.46% and the grading size fraction is 0.51%. After the correction of the image method, the error between the grading size fractions obtained by the two methods was reduced from 7.22%, 6.10% and 5% to 1.47%, 1.65%, and 3.23%, respectively. The accuracy of the particle-size detection can thus satisfy real-world measuring requirements.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC6294553PMC
http://journals.plos.org/plosone/article?id=10.1371/journal.pone.0206135PLOS

Publication Analysis

Top Keywords

manufactured sand
16
grading size
12
sand particles
8
particle size
8
size fractions
8
size
6
sand
5
image
5
method
5
detection size
4

Similar Publications

From both economic and environmental points of view, the reuse of dredged sediments in the direct onsite casting of concrete represents a promising method for replacing sand. The aim of this study was to develop a cementitious material that (i) reuses the thin particles of sediments; (ii) has a low density due to the incorporation of air foam in the material; and (iii) achieves a minimum mechanical strength of 0.5 MPa for embankment applications.

View Article and Find Full Text PDF

Evaluating the Appropriateness of Selected Foundry Sands for the Casting of Reactor Housings: A Study Based on Physicochemical Characterization Outcomes.

Materials (Basel)

December 2024

Faculty of Geology, Geophysics and Environmental Protection, AGH University of Krakow, al. A. Mickiewicza 30, 30-059 Krakow, Poland.

In the case of desulfurization and spheroization of cast iron using the in-mold method, in which the treated cast iron is poured into the reaction chamber and placed in the casting mold, the mineral raw material of the mold should support these processes. Therefore, it is important to know the physicochemical properties of the materials selected for the production of casting molds and to learn about the phenomena occurring during their pouring. The research presented in this paper was carried out on quartz, magnesite, chromite, and olivine sands.

View Article and Find Full Text PDF

Material stocks of infrastructure, buildings, and machinery are the biophysical basis of production and consumption. They are a crucial lever for resource efficiency and a sustainable circular economy. While material stock research has proliferated over the last years, most studies investigated specific materials or end-uses, usually not embedded into an economy-wide perspective.

View Article and Find Full Text PDF

Objective: The aim of the study is to study the degree of adhesion of reference strains of microorganisms to the surface of modern polymer materials for the manufacture of removable prostheses.

Materials And Methods: The primary and residual microbial adhesion of 4 types of polymers was studied: acrylic polymer (Villacryl H Plus), monomerless polymer (Vertex ThermoSens), photopolymers for additive manufacturing (Harz Labs Dental Denture Base, Harz Labs Dental Sand). , , , and were used as reference strains.

View Article and Find Full Text PDF

The stress status of a soil pressure cell placed in soil is very different from its stress state in a uniform fluid medium. The use of the calibration coefficient provided by the soil pressure cell manufacturer will produce a large error. In order to improve the measurement accuracy of the interface-type earth pressure cell placed in soil, this paper focuses on a single-membrane resistive earth pressure cell installed on the surface of a structure, analyzing the influence of loading and unloading cycles, the thickness and particle size of the sand filling, and the depth of the earth pressure cell inserted in the structure on the calibration curve and matching error, which were analyzed through calibration tests.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!