Chronic exposure of pancreatic β cells to high concentrations of free fatty acids leads to lipotoxicity (LT)-mediated suppression of glucose-stimulated insulin secretion. This effect is in part caused by a decline in mitochondrial function as well as by a reduction in lysosomal acidification. Because both mitochondria and lysosomes can alter one another's function, it remains unclear which initiating dysfunction sets off the detrimental cascade of LT, ultimately leading to β-cell failure. Here, we investigated the effects of restoring lysosomal acidity on mitochondrial function under LT. Our results show that LT induces a dose-dependent lysosomal alkalization accompanied by an increase in mitochondrial mass. This increase is due to a reduction in mitochondrial turnover as analyzed by MitoTimer, a fluorescent protein for which the emission is regulated by mitochondrial clearance rate. Mitochondrial oxygen consumption rate, citrate synthase activity, and ATP content are all reduced by LT. Restoration of lysosomal acidity using lysosome-targeted nanoparticles is accompanied by stimulation of mitochondrial turnover as revealed by mitophagy measurements and the recovery of mitochondrial mass. Remarkably, re-acidification restores citrate synthase activity and ATP content in an insulin secreting β-cell line (INS-1). Furthermore, nanoparticle-mediated lysosomal reacidification rescues mitochondrial maximal respiratory capacity in both INS-1 cells and primary mouse islets. Therefore, our results indicate that mitochondrial dysfunction is downstream of lysosomal alkalization under lipotoxic conditions and that recovery of lysosomal acidity is sufficient to restore the bioenergetic defects.-Assali, E. A., Shlomo, D., Zeng, J., Taddeo, E. P., Trudeau, K. M., Erion, K. A., Colby, A. H., Grinstaff, M. W., Liesa, M., Las, G., Shirihai, O. S. Nanoparticle-mediated lysosomal reacidification restores mitochondrial turnover and function in β cells under lipotoxicity.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC8793810 | PMC |
http://dx.doi.org/10.1096/fj.201801292R | DOI Listing |
Cell Death Dis
January 2025
CECAD Cluster of Excellence, University of Cologne, Cologne, Germany.
Constitutive mitochondrial dynamics ensure quality control and metabolic fitness of cells, and their dysregulation has been implicated in various human diseases. The large GTPase Dynamin-related protein 1 (Drp1) is intimately involved in mediating constitutive mitochondrial fission and has been implicated in mitochondrial cell death pathways. During ferroptosis, a recently identified type of regulated necrosis driven by excessive lipid peroxidation, mitochondrial fragmentation has been observed.
View Article and Find Full Text PDFNat Commun
January 2025
Department of Biological Sciences, Dedman College of Humanities and Sciences, Southern Methodist University, Dallas, TX, 75275, USA.
The 40S ribosomal subunit recycling pathway is an integral link in the cellular quality control network, occurring after translational errors have been corrected by the ribosome-associated quality control (RQC) machinery. Despite our understanding of its role, the impact of translation quality control on cellular metabolism remains poorly understood. Here, we reveal a conserved role of the 40S ribosomal subunit recycling (USP10-G3BP1) complex in regulating mitochondrial dynamics and function.
View Article and Find Full Text PDFPharm Biol
December 2025
The Affiliated Hospital, Changchun University of Chinese Medicine, Changchun, China.
Context: The decline in ovarian reserve is a major concern in female reproductive health, often associated with oxidative stress and mitochondrial dysfunction. Although ginsenoside Rg1 is known to modulate mitophagy, its effectiveness in mitigating ovarian reserve decline remains unclear.
Objective: To investigate the role of ginsenoside Rg1 in promoting mitophagy to preserve ovarian reserve.
Int J Mol Sci
January 2025
Department of Nephrology, Carol Davila University of Medicine and Pharmacy, 020021 Bucharest, Romania.
Autophagy and mitophagy are critical cellular processes that maintain homeostasis by removing damaged organelles and promoting cellular survival under stress conditions. In the context of diabetic kidney disease, these mechanisms play essential roles in mitigating cellular damage. This review provides an in-depth analysis of the recent literature on the relationship between autophagy, mitophagy, and diabetic kidney disease, highlighting the current state of knowledge, existing research gaps, and potential areas for future investigations.
View Article and Find Full Text PDFInt J Mol Sci
January 2025
Division of Pharmaceutics, Faculty of Pharmaceutical Sciences, Sanyo-Onoda City University, Yamaguchi 756-0884, Japan.
The application of regenerative therapy through stem cell transplantation has emerged as a promising avenue for the treatment of diabetes mellitus (DM). Transplanted tissue homeostasis is affected by disturbances in the clock genes of stem cells. The aim of this study is to investigate the diurnal variation in mitochondrial genes and function after transplantation of adipose-derived mesenchymal stem cells (T2DM-ADSCs) from type 2 diabetic patients into immunodeficient mice.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!