Eugenol (EU) - PEG adduct was synthesized to improve the chemical and physical properties of eugenol. The phenolic group was covalently bound to the carboxyl group of PEG and the release kinetics were studied in vitro in buffer solution at pH 7.4, in simulated gastric fluid and in mouse plasma. Studies in vitro on the release of the parent drug from the prodrug in various media indicate that the adduct may be sufficiently stable to pass intact into the gastrointestinal tract and release EU into the circulation. The antioxidant activity of PEG-EU adduct was also evaluated. Scavenging activity was absent in the original PEG-EU adduct but gradually increased on the basis of drug delivery.

Download full-text PDF

Source

Publication Analysis

Top Keywords

chemical physical
8
physical properties
8
eugenol peg
8
peg adduct
8
peg-eu adduct
8
adduct
5
improvement chemical
4
properties antioxidant
4
antioxidant evaluation
4
evaluation eugenol
4

Similar Publications

Understanding the values and origin of fundamental physical constants, one of the grandest challenges in modern science, has been discussed in particle physics, astronomy and cosmology. More recently, it was realized that fundamental constants have a biofriendly window set by life processes involving motion and flow. This window is related to intrinsic fluid properties such as energy and length scales in condensed matter set by fundamental constants.

View Article and Find Full Text PDF

TiO-ZnO functionalized low-cost ceramic membranes from coal fly ash for the removal of tetracycline from water under visible light.

Discov Nano

January 2025

Materials Science Innovation and Modelling (MaSIM) Research Focus Area, Faculty of Natural and Agricultural Sciences, North-West University, Mafikeng Campus, Private Bag X2046, Mmabatho, 2735, South Africa.

Hybrid wastewater treatment systems offer viable solutions to enhance the removal of complicated contaminants from aqueous system. This innovation has opened new avenues for advanced wastewater treatment processes. Herein, a novel TiO-ZnO functionalized coal fly ash-based ceramic membrane was fabricated by utilizing a combined pressing and sintering method.

View Article and Find Full Text PDF

Emerging devices based on chiral nanomaterials.

Nanoscale

January 2025

Wenzhou Key Laboratory of Biophysics, Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, Zhejiang 325000, China.

As advanced materials, chiral nanomaterials have recently gained vast attention due to their special geometry-based physical and chemical properties. The fast development of the related science and technology means that various devices involving polarization-based information encryption, photoelectronic and spintronic devices, 3D displays, biomedical sensors and measurement, photonic engineering, electronic engineering, solar devices, , been explored extensively. These fields are at their beginning, and much effort needs to be made, including improving the optical, electronic, and magnetic properties of advanced chiral nanomaterials, precisely designing materials, and developing more efficient construction methods.

View Article and Find Full Text PDF

Recent Advancements and Applications of Nanosensors in Oral Health: Revolutionizing Diagnosis and Treatment.

Eur J Dent

December 2024

Department of Dentistry, Oral Health Institute, Hamad Medical Corporation, Doha, Qatar, College of Dental Medicine, Qatar University, Doha, Qatar.

Advances in the field of nanomaterials are laying the foundation for the fabrication of nanosensors that are sensitive, selective, specific, cost-effective, biocompatible, and versatile. Being highly sensitive and selective, nanosensors are crucial in detecting small quantities of analytes and early diagnosis of diseases. These devices, operating on the nanoscale, detect signals, such as physical, chemical, optical, electrochemical, or biological, and then transduce them into a readable form.

View Article and Find Full Text PDF

Efficient Sampling for Machine Learning Electron Density and Its Response in Real Space.

J Chem Theory Comput

January 2025

Key Laboratory of Precision and Intelligent Chemistry, Department of Chemical Physics, University of Science and Technology of China, Hefei, Anhui 230026, China.

Electron density is a fundamental quantity that can in principle determine all ground state electronic properties of a given system. Although machine learning (ML) models for electron density based on either an atom-centered basis or a real-space grid have been proposed, the demand for a number of high-order basis functions or grid points is enormous. In this work, we propose an efficient grid-point sampling strategy that combines targeted sampling favoring a large density and a screening of grid points associated with linearly independent atomic features.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!