Microorganisms have made considerable contributions to the production of peptide secondary metabolites, many of them with therapeutic potential eg, the fungus-derived immunosuppressant cyclosporine A and the antibiotic daptomycin originating from Streptomyces. Most of the medically used peptides are the :product of non-ribosomal peptide synthetases (NRPS), incorporating apart from proteinogenic also unique, non-proteinogenic amino acids into the peptides. An extremely rare such amino acid is 3-(3-furyl)-alanine. So far, only few peptides have been found that contain this residue, including the rhizonins, bingchamide B and endolides. The producer of the rhizonins was proven to be the bacterial endosymbiont Burkholderia endofungorum inside the fungus Rhizopus microsporus. The microbial origin, chemistry and bioactivity of the 3-(3-furyl)-alanine containing peptides are the focus of this review.

Download full-text PDF

Source

Publication Analysis

Top Keywords

rare amino
8
amino acid
8
3-3-furyl-alanine peptides
8
peptides
5
acid building
4
building block
4
block 3-3-furyl-alanine
4
3-3-furyl-alanine formation
4
formation non-ribosomal
4
non-ribosomal peptides
4

Similar Publications

Three cases of hemoglobin M disease in a family lineage: Case report and literature review.

Medicine (Baltimore)

January 2025

Department of Pediatric Hematology, Children's Medical Center, The First Hospital of Jilin University, Changchun, China.

Rationale: This study presents a case of hemoglobin M disease (HMD), a rare inherited disorder characterized by persistent cyanosis and hypoxemia, observed across 3 generations within a single family. The diagnosis of HMD poses significant challenges, particularly in asymptomatic individuals, due to its rarity and the subtlety of its symptoms. Notably, there is a scarcity of reports on methemoglobinemia in pediatric populations, which further complicates early detection and intervention.

View Article and Find Full Text PDF

Background: Aromatic L-amino acid decarboxylase (AADC) deficiency is a rare life-threatening inborn error of neurotransmitter biosynthesis. It is characterized by deficient biosynthesis of neurotransmitters dopamine and serotonin, leading to catecholamines deficiency and sympathetic deprivation, while the parasympathetic system remains functional. Since 2012, gene therapy has led to clinical improvements in symptoms and motor function with a severe phenotype.

View Article and Find Full Text PDF

Cold climate-driven convergent evolution among angiosperms.

Plant Commun

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University; Hangzhou 311300, China; Zhejiang International Science and Technology Cooperation Base for Plant Germplasm Resources Conservation and Utilization, Zhejiang A&F University; Hangzhou 311300, China; Provincial Key Laboratory for Non-wood Forest and Quality Control and Utilization of Its Products, Zhejiang A&F University, Hangzhou 311300, China. Electronic address:

Convergent and parallel evolution occur more frequently than previously thought. Here, we focus on the evolutionary adaptations of angiosperms to sub-zero temperatures. We begin by introducing the research history of convergent and parallel evolution, defining all independent similarities as convergent evolution.

View Article and Find Full Text PDF

Background: AADCd is a rare neurometabolic disorder presenting in infancy. Children with AADCd have motor dysfunction and development delays that result in the need for lifelong care; quality of life is greatly impacted. Current characterizations of health-related quality of life and associated health state utilities (HSUs) may be underestimated in AADCd.

View Article and Find Full Text PDF

Visible light-driven pyridoxal radical biocatalysis has emerged as a new strategy for the stereoselective synthesis of valuable noncanonical amino acids in a protecting-group-free fashion. In our previously developed dehydroxylative C-C coupling using engineered PLP-dependent tryptophan synthases, an enzyme-controlled unusual α-stereochemistry reversal and pH-controlled enantiopreference were observed. Herein, through high-throughput photobiocatalysis, we evolved a set of stereochemically complementary PLP radical enzymes, allowing the synthesis of both l- and d-amino acids with enhanced enantiocontrol across a broad pH window.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!