Polymerization shrinkage of methacrylate composites utilizing bisphenol-A glycidal methacylate or urethane dimethacrylate has typically been about 3-3.5% by volume. Though adjustments have been made to filler loading, filler size, filler particle distribution, and improved silanization, the polymerization contraction still creates some significant clinical problems. A new composite utilizing a completely different chemistry has been released, with polymerization shrinkage of less than one percent. This article will review the clinical effects of polymerization contraction of composite resins, the nature and properties of this chemical form of composite, and potential clinical applications.
Download full-text PDF |
Source |
---|
Pharmaceuticals (Basel)
January 2025
Department of Pharmaceutical Botany, Faculty of Pharmacy, "Grigore T. Popa" University of Medicine and Pharmacy, 700115 Iaşi, Romania.
The present experiment aimed to formulate four ointments that included mixtures of plant extracts (, , , and ), apitherapy products (honey, propolis, and apilarnil) and natural polymers (collagen, chitosan, and the lyophilisate of egg white) in an ointment base. : In order to investigate the therapeutic properties of the ointments, experimental in vivo injury models (linear incision, circular excision, and thermal burns) were performed on laboratory animals, namely Wistar rats. The treatment was applied topically, once a day, for 21 days.
View Article and Find Full Text PDFMaterials (Basel)
January 2025
High Speed 3D Printing Research Center, National Taiwan University of Science and Technology, No. 43, Sec. 4, Keelung Rd., Taipei 106, Taiwan.
Selective laser sintering (SLS) is one of the prominent methods of polymer additive manufacturing (AM). A low-power laser source is used to directly melt and sinter polymer material into the desired shape. This study focuses on the utilization of the low-power laser SLS system to successfully manufacture metallic components through the development of a metal-polymer composite material.
View Article and Find Full Text PDFInt J Biol Macromol
January 2025
Pasteur Institute of Iran, Faculty of Bioscience and Biotechnology, Tehran, Iran.
In recent years, attempts were made to develop biomaterials using synthetic and natural polymers to induce osteogenesis of human mesenchymal stem cells (hMSCs). Poly(ε-caprolactone) (PCL) is one of the few synthetic polymers with the potential to differentiate hMSCs to bone. However, its potential is limited, attributed to its low strength; its fast crystallization rate also compromises its dimensional stability.
View Article and Find Full Text PDFJ Occup Environ Hyg
January 2025
Center for Environmental Solutions and Emergency Response, United States Environmental Protection Agency, Cincinnati, Ohio.
Chemical release data are essential for performing chemical risk assessments to understand the potential exposures arising from industrial processes. Often, these data are unknown or unavailable and must be estimated. A case study of volatile organic compound releases during extrusion-based additive manufacturing is used here to explore the viability of various regression methods for predicting chemical releases to inform chemical assessments.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Chemical Engineering, Kwangwoon University, 20, Kwangwoon-ro, Nowon-gu, Seoul 01897, Republic of Korea.
A novel monomer, 9-bis[4-(2-hydroxyethoxy)phenyl]fluorene di(mercaptopropionate), with a highly refractive index, purity, and excellent UV-curable properties, is synthesized through an optimized Fischer esterification process, reacting 9,9-bis[4-(2-hydroxyethoxy)phenyl]fluorene with 3-mercaptopropionic acid. The structural characterization of this monomer is performed using Fourier-transform infrared spectroscopy, nuclear magnetic resonance spectroscopy, high-performance liquid chromatography, and liquid chromatography-mass spectrometry. The synthesis conditions are optimized using a design-of-experiments approach.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!