Wheat grain protein concentration is an important determinant of wheat quality for human nutrition that is often overlooked in efforts to improve crop production. We tested and applied a 32-multi-model ensemble to simulate global wheat yield and quality in a changing climate. Potential benefits of elevated atmospheric CO concentration by 2050 on global wheat grain and protein yield are likely to be negated by impacts from rising temperature and changes in rainfall, but with considerable disparities between regions. Grain and protein yields are expected to be lower and more variable in most low-rainfall regions, with nitrogen availability limiting growth stimulus from elevated CO . Introducing genotypes adapted to warmer temperatures (and also considering changes in CO and rainfall) could boost global wheat yield by 7% and protein yield by 2%, but grain protein concentration would be reduced by -1.1 percentage points, representing a relative change of -8.6%. Climate change adaptations that benefit grain yield are not always positive for grain quality, putting additional pressure on global wheat production.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1111/gcb.14481 | DOI Listing |
Plant Foods Hum Nutr
January 2025
Department of Food and Human Nutritional Sciences, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada.
J Sci Food Agric
January 2025
Agriculture & Agri-Food Canada, Morden Research and Development Centre, Morden, Canada.
Background: The relationship between oat grain composition and physical attributes as influenced by oat genotype and Canadian growing environments was investigated. Thirty Canadian oat (Avena sativa L.) genotypes, grown in three Canadian growing locations (Brandon, Manitoba; Portage la Prairie, Manitoba; and Lacombe, Alberta) over 2 consecutive years (2020-2021), were analyzed.
View Article and Find Full Text PDFFront Plant Sci
December 2024
R. H. Smith Faculty of Agriculture, Food and Environment, The Hebrew University of Jerusalem, Rehovot, Israel.
Climate change is becoming a global challenge, threating agriculture's capacity to meet the food and nutritional requirements of the growing population. Underutilized crops present an opportunity to address climate change and nutritional deficiencies. Tef is a stress-resilient cereal crop, producing gluten-free grain of high nutritional quality.
View Article and Find Full Text PDFFront Plant Sci
December 2024
Botany and Microbiology Department, Faculty of Science, Beni-Suef University, Beni-Suef, Egypt.
Introduction: Heat stress caused by global warming adversely affects wheat yield through declining most nutritional quality attributes in grains, excluding grain protein content.
Methods: This research investigated the biochemical, physiological, and antioxidant responses of wheat plants under heat stress, focusing on the role of plant growth-promoting bacteria ( sp.).
Food Sci Biotechnol
January 2025
College of Food Science and Technology, Whole Grain Food Engineering Research Center, Nanjing Agricultural University, Nanjing, 210095 Jiangsu People's Republic of China.
Unlabelled: Roasting can dissolve the nutrients accumulated in germinated brown rice (GBR). This study investigated the effects of roasting on physical properties, nutrients and flavor substances of GBR. Results demonstrated that longer roasting time resulted in more browning and a decrease in the moisture content.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!