Abstractbackground: Monocytic myeloid-derived suppressor cells (MO-MDSCs) play an important role in maintaining normal pregnancy. However, it is still not clear what kind of changes in MO-MDSCs may lead to miscarriage, and which gene expression changes take place when MO-MDSCs migrate to the uterus as bone marrow-derived cells.

Methods: We used flow sorting technology to obtain MO-MDSCs from the maternal-fetal interface and bone marrow, respectively. Affymetrix 3'IVT expression profiling chip technology was used to detect the differential gene expression profiles in MO-MDSCs at the maternal-fetal interface in a mouse model of spontaneous abortion compared with the normal fertility control mice. We also compared the differential gene expression of MO-MDSCs at the maternal-fetal interface compared with bone marrow in the normal fertility control mice.

Results: We found that 3,409 genes in MO-MDSCs were upregulated and 1,539 genes were downregulated at the maternal-fetal interface in the spontaneous abortion mice compared with the normal fertility mice. These genes are enriched in cellular components, biological processes, molecular functions, and protein binding, tumor signaling pathway, the PI3K-Akt signaling pathway, intratumoral proteoglycans, and extracellular matrix receptor interactions. Furthermore, we found that 270 genes in MO-MDSCs were upregulated and 383 genes were downregulated at the maternal-fetal interface in the normal fertility mice compared with those in the bone marrow. These genes are enriched in cellular components, biological processes, molecular functions, cell cycle, tumor transcriptional disorder, and cell adhesion molecules.

Conclusion: Differential gene expression in MO-MDSCs likely contributes to a successful pregnancy in fetal-maternal immunotolerance.

Download full-text PDF

Source
http://dx.doi.org/10.1002/jcp.27902DOI Listing

Publication Analysis

Top Keywords

maternal-fetal interface
24
gene expression
20
differential gene
16
normal fertility
16
spontaneous abortion
12
mo-mdscs maternal-fetal
12
bone marrow
12
mice compared
12
mo-mdscs
9
monocytic myeloid-derived
8

Similar Publications

CD8+ and CD8- NK Cells and Immune Checkpoint Networks in Peripheral Blood During Healthy Pregnancy.

Int J Mol Sci

January 2025

Department of Medical Microbiology and Immunology, Medical School, University of Pecs, 12 Szigeti Street, 7624 Pecs, Hungary.

Pregnancy involves significant immunological changes to support fetal development while protecting the mother from infections. A growing body of evidence supports the importance of immune checkpoint pathways, especially at the maternal-fetal interface, although limited information is available about the peripheral expression of these molecules by CD8+ and CD8- NK cell subsets during the trimesters of pregnancy. Understanding the dynamics of these immune cells and their checkpoint pathways is crucial for elucidating their roles in pregnancy maintenance and potential complications.

View Article and Find Full Text PDF

Prenatal maternal stress (PNMS) determines lifetime mental and physical health. Here, we show in rats that PNMS has consequences for placental function and fetal brain development across four generations (F0-F3). Using a systems biology approach, comprehensive DNA methylation (DNAm), miRNA, and mRNA profiling revealed a moderate impact of PNMS in the F1 generation, but drastic changes in F2 and F3 generations, suggesting compounding effects of PNMS with each successive generation.

View Article and Find Full Text PDF

HMGB1 induces unexplained recurrent spontaneous abortion by mediating decidual macrophage autophagy.

Int Immunopharmacol

January 2025

Department of Obstetrics and Gynecology, the First Affiliated Hospital of Anhui Medical University, No 218 Jixi Road, Hefei 230022, Anhui, China; NHC Key Laboratory of Study on Abnormal Gametes and Reproductive Tract (Anhui Medical University), No 81 Meishan Road, Hefei 230032, Anhui, China; Engineering Research Center of Biopreservation and Artificial Organs, Ministry of Education, No 81 Meishan Road, Hefei 230032, Anhui, China; Innovation Research Institute of Engineering Medicine and Medical Equipment, Anhui Medical University, No 81 Meishan Road, Hefei 230032, Anhui, China; Anhui Provincial Institute of Translational Medicine, No 81 Meishan Road, Hefei 230032, Anhui, China. Electronic address:

Background: The overexpression of HMGB1 at the maternal-fetal interface (MFI) is recognized as a significant factor in Unexplained Recurrent Spontaneous Abortion (URSA). This study aimed to investigate autophagy in the decidual tissues of URSA patients and to explore the relationship between HMGB1 and macrophage autophagy at the MFI in URSA.

Methods: Human decidual tissues were collected from 40 patients diagnosed with URSA and from 60 women undergoing active termination of pregnancy.

View Article and Find Full Text PDF

We Should Perform a Systematic Evaluation of the Placenta.

J Ultrasound Med

January 2025

Department of Obstetrics and Gynecology and Reproductive Sciences, McGovern Medical School, University of Texas, Health Science Center at Houston (UTHealth), Houston, Texas, USA.

Despite its critical importance, the placenta receives substantially less attention during obstetric ultrasound examinations compared to the fetus. The evaluation of the placenta is typically limited to determining its location within the uterus, particularly its relationship to the cervix. Abnormal placenta findings are the result of gross anomalies identified by chance during obstetric examinations, rather than from a systematic evaluation.

View Article and Find Full Text PDF

Signaling via retinoic acid receptors mediates decidual angiogenesis in mice and human stromal cell decidualization.

FASEB J

January 2025

Department of Obstetrics, Gynecology and Reproductive Health, Rutgers Biomedical and Health Sciences, Newark, New Jersey, USA.

At the maternal-fetal interface, tightly regulated levels of retinoic acid (RA), the physiologically active metabolite of vitamin A, are required for embryo implantation and pregnancy success. Herein, we utilize mouse models, primary human cells, and pharmacological tools to demonstrate how depletion of RA signaling via RA receptor (RAR) disrupts implantation and progression of early pregnancy. To inhibit RAR signaling during early pregnancy, BMS493, an inverse pan-RAR agonist that prevents RA-induced differentiation, was administered to pregnant mice during the peri-implantation period.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!