Directional self-assembly of uncharged molecules in water is a major challenge in supramolecular chemistry. Herein, it is demonstrated that peptide-based cavitands wrap around a hydrophobic core (fullerene C ) by a combination of the hydrophobic effect and hydrogen-bonding interactions to form highly ordered three-component complexes in water that resemble the molten-globule stage of protein folding. The complexes were characterized by DOSY NMR spectroscopy, small-angle X-ray scattering, and circular dichroism, and their structures were confirmed by X-ray crystallography. Enhancement of the CD signals by nearly one order of magnitude and increased hydrolytic stability of hydrazone bonds of the complexes relative to the nonassembled species were observed. In contrast, DMSO and DMSO/water mixtures were found to be highly disintegrative for these complexes. Interestingly, some cavitands can only be synthesized in the presence of the hydrophobic template followed by disassembly of the complexes.

Download full-text PDF

Source
http://dx.doi.org/10.1002/chem.201805353DOI Listing

Publication Analysis

Top Keywords

peptide-based cavitands
8
complexes
5
self-assembly ordering
4
ordering peptide-based
4
cavitands water
4
water dmso
4
dmso power
4
hydrophobic
4
power hydrophobic
4
hydrophobic effects
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!