Purpose: Patient-specific quality assurance (QA) for intensity-modulated radiation therapy (IMRT) is a ubiquitous clinical procedure, but conventional methods have often been criticized as being insensitive to errors or less effective than other common physics checks. Recently, there has been interest in the application of radiomics, quantitative extraction of image features, to radiotherapy QA. In this work, we investigate a deep learning approach to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient-specific QA.
Methods: Planar dose maps from 186 IMRT beams from 23 IMRT plans were evaluated. Each plan was transferred to a cylindrical phantom CT geometry. Three sets of planar doses were exported from each plan corresponding to (a) the error-free case, (b) a random multileaf collimator (MLC) error case, and (c) a systematic MLC error case. Each plan was delivered to the electronic portal imaging device (EPID), and planned and measured doses were used to calculate gamma images in an EPID dosimetry software package (for a total of 558 gamma images). Two radiomic approaches were used. In the first, a convolutional neural network with triplet learning was used to extract image features from the gamma images. In the second, a handcrafted approach using texture features was used. The resulting metrics from both approaches were input into four machine learning classifiers (support vector machines, multilayer perceptrons, decision trees, and k-nearest-neighbors) in order to determine whether images contained the introduced errors. Two experiments were considered: the two-class experiment classified images as error-free or containing any MLC error, and the three-class experiment classified images as error-free, containing a random MLC error, or containing a systematic MLC error. Additionally, threshold-based passing criteria were calculated for comparison.
Results: In total, 303 gamma images were used for model training and 255 images were used for model testing. The highest classification accuracy was achieved with the deep learning approach, with a maximum accuracy of 77.3% in the two-class experiment and 64.3% in the three-class experiment. The performance of the handcrafted approach with texture features was lower, with a maximum accuracy of 66.3% in the two-class experiment and 53.7% in the three-class experiment. Variability between the results of the four machine learning classifiers was lower for the deep learning approach vs the texture feature approach. Both radiomic approaches were superior to threshold-based passing criteria.
Conclusions: Deep learning with convolutional neural networks can be used to classify the presence or absence of introduced radiotherapy treatment delivery errors from patient-specific gamma images. The performance of the deep learning network was superior to a handcrafted approach with texture features, and both radiomic approaches were better than threshold-based passing criteria. The results suggest that radiomic QA is a promising direction for clinical radiotherapy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1002/mp.13338 | DOI Listing |
J Chem Inf Model
January 2025
School of Information Science & Engineering, Lanzhou University, Lanzhou 730000, China.
Efficient and accurate drug-target affinity (DTA) prediction can significantly accelerate the drug development process. Recently, deep learning models have been widely applied to DTA prediction and have achieved notable success. However, existing methods often encounter several common issues: first, the data representations lack sufficient information; second, the extracted features are not comprehensive; and third, most methods lack interpretability when modeling drug-target binding.
View Article and Find Full Text PDFiScience
February 2025
Division of Newborn Medicine, Department of Pediatrics, Boston Children's Hospital, Boston, MA, USA.
Neurodevelopmental impairments associated with congenital heart disease (CHD) may arise from perturbations in brain developmental pathways, including the formation of sulcal patterns. While genetic factors contribute to sulcal features, the association of noncoding variants (ncDNVs) with sulcal patterns in people with CHD remains poorly understood. Leveraging deep learning models, we examined the predicted impact of ncDNVs on gene regulatory signals.
View Article and Find Full Text PDFCureus
December 2024
Department of Orthodontics, School of Dentistry, Shahid Beheshti University of Medical Sciences, Tehran, IRN.
Background Orthodontic diagnostic workflows often rely on manual classification and archiving of large volumes of patient images, a process that is both time-consuming and prone to errors such as mislabeling and incomplete documentation. These challenges can compromise treatment accuracy and overall patient care. To address these issues, we propose an artificial intelligence (AI)-driven deep learning framework based on convolutional neural networks (CNNs) to automate the classification and archiving of orthodontic diagnostic images.
View Article and Find Full Text PDFNeurooncol Adv
January 2025
Institute for Artificial Intelligence in Medicine, University Hospital Essen, Germany.
Background: This study aimed to develop an automated algorithm to noninvasively distinguish gliomas from other intracranial pathologies, preventing misdiagnosis and ensuring accurate analysis before further glioma assessment.
Methods: A cohort of 1280 patients with a variety of intracranial pathologies was included. It comprised 218 gliomas (mean age 54.
Clin Park Relat Disord
January 2025
Department of Neurology, University Medical Centre Ljubljana, 1000 Ljubljana, Slovenia.
Introduction: Intraoperative microelectrode recording (MER) and intraoperative test stimulation may provide vital information for optimal electrode placement and clinical outcome in movement disorders patients treated with deep brain stimulation (DBS). The aims of this retrospective study were to determine (i) how often the planned (imaging based) placements of electrodes were changed due to MER and intraoperative test stimulation in Parkinson's disease (PD), dystonia and essential tremor (ET) patients; (ii) whether the frequency of repositioning changed over time; (iii) whether patients' age or disease duration (in PD) influenced the frequency of repositioning.
Methods: Data on the planned and the final placement of 141 electrodes in 72 consecutive DBS treated patients (52 PD, 11 dystonia, 9 ET) was collected over the first 8 years of DBS implementation in a single center.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!